ション ふゆ マ キャット しょう くしゃ

On the structure theorem for modular forms ... Igusa's result and beyond

Hiroki Aoki

Tokyo University of Science

JAMI 2017 Conference Local zeta functions and the arithmetic of moduli spaces A conference in memory of Jun-ichi Igusa

March 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Professor Jun-ichi Igusa for me (1)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research.

ション ふゆ く は く は く む く む く し く

Professor Jun-ichi Igusa for me (1)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. It is because...

Professor Jun-ichi Igusa for me (1)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. It is because...

my doctoral thesis is an elementary proof of Igusa's theorem.

Here, **Igusa's theorem** means the determination of the structure of the graded ring of all Siegel modular forms of degree 2 w.r.t $\text{Sp}_2(\mathbb{Z})$.

Professor Jun-ichi Igusa for me (1)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. It is because...

my doctoral thesis is an elementary proof of Igusa's theorem.

Here, **Igusa's theorem** means the determination of the structure of the graded ring of all Siegel modular forms of degree 2 w.r.t $\text{Sp}_2(\mathbb{Z})$.

Keywords: Primitive forms, Period integral by Kyoji Saito Siegelsch Modulfunktionen by E. Freitag Jacobi forms by D. Zagier, M. Eichler, ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Professor Jun-ichi Igusa for me (2)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Professor Jun-ichi Igusa for me (2)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. Therefore, in these 20 years, in my research talks, I often said **Igusa's theorem**...

Professor Jun-ichi Igusa for me (2)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. Therefore, in these 20 years, in my research talks, I often said **Igusa's theorem**...

Once, there was a man, who is not a mathematician, said

'Does your **Igusa** means **Jun-ichi**?'

Professor Jun-ichi Igusa for me (2)

I have not met Professor **Jun-ichi Igusa**, however, he is one of the most important mathematician on my research. Therefore, in these 20 years, in my research talks, I often said **Igusa's theorem**...

Once, there was a man, who is not a mathematician, said

'Does your Igusa means Jun-ichi?'

He is Igusa's high school junior! And he was a professor on physics in my university.

Siegel upper half space

We denote Siegel upper half space of degree 2 by

$$\mathbb{H}_2 := \left\{ Z = {}^t Z = \begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid \operatorname{Im} Z > 0 \right\}.$$

The symplectic group

$$\operatorname{Sp}_{2}(\mathbb{R}) = \left\{ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{M}_{4}(\mathbb{R}) \mid {}^{t}MJM = J := \begin{pmatrix} O_{2} & -E_{2} \\ E_{2} & O_{2} \end{pmatrix} \right\}$$

acts on \mathbb{H}_2 transitively by

$$\mathbb{H}_2 \ni Z \longmapsto M\langle Z \rangle := (AZ + B)(CZ + D)^{-1} \in \mathbb{H}_2.$$

For a holomorphic function $F : \mathbb{H}_2 \to \mathbb{C}$ and $k \in \mathbb{Z}$, define

$$(F|_k M)(Z) := \det(CZ + D)^{-k} F(M\langle Z \rangle).$$

ション ふゆ マ キャット マックタン

Siegel modular forms

Let $\operatorname{Sp}_2(\mathbb{Z}) := \operatorname{Sp}_2(\mathbb{R}) \cap \operatorname{M}_4(\mathbb{Z}).$

Definition.

We say a holomorphic function $F : \mathbb{H}_2 \to \mathbb{C}$ is a Siegel modular form of weight k if F satisfies the condition $F|_k M = F$ for any $M \in \mathrm{Sp}_2(\mathbb{Z})$.

 \mathbb{M}_k : \mathbb{C} -vector space of all Siegel modular forms of weight k.

From general theory, we can show:

- If k < 0, $\mathbb{M}_k = \{0\}$.
- If k = 0, $\mathbb{M}_0 = \mathbb{C}$.
- If k > 0, dim_{\mathbb{C}} \mathbb{M}_k is finite.

ション ふゆ マ キャット しょう くしゃ

Graded ring of Siegel modular forms

Then,

$$\mathbb{M}_* := igoplus_{k \in \mathbb{Z}} \mathbb{M}_k$$

is a graded ring.

Question.

To determine the structure of the graded ring \mathbb{M}_*

From general theory, we know there are 4 algebraically independent generators, however, to determine the explicit structure of \mathbb{M}_* is not easy.

Igusa's theorem

Theorem. (Igusa 1962)

- \mathbb{M}_* is generated by 5 forms of weight 4, 6, 10, 12, 35.
- The first 4 generators are algebraically independent.
- The square of the last generator is in the ring generated by the first 4 generators. (He showed the explicit relations.)

$$\sum_{k=0}^{\infty} (\dim \mathbb{M}_k) x^k = \frac{1+x^{35}}{(1-x^4)(1-x^6)(1-x^{10})(1-x^{12})}$$

This is the first result on the determination of the structure of modular forms of several variables.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Graded ring of modular forms

My interest

To determine the structure of the graded ring of modular forms of several variables.

This is closely related to:

- Dimension formula
- Construction of modular forms
 - Theta functions
 - Differential operators
 - Eisenstein series
- Fourier coefficients of modular forms
 - L-functions
 - Hecke theory
- Number theory
- Algebraic Geometry

ション ふゆ マ キャット マックタン

General theory

Here we consider modular forms of n variables.

 \mathbb{M}_k : \mathbb{C} -vector space of all modular forms of weight $k \in \mathbb{Z}$.

Under suitable condictions, we can show:

- If k < 0, $\mathbb{M}_k = \{0\}$.
- If k = 0, $\mathbb{M}_0 = \mathbb{C}$.
- If k > 0, $\dim_{\mathbb{C}} \mathbb{M}_k$ is finite.

Then,

$$\mathbb{M}_* := \bigoplus_{k \in \mathbb{Z}} \mathbb{M}_k$$

is a graded ring.

There are n + 1 algebraically independent generators of \mathbb{M}_* .

ション ふゆ マ キャット しょう くしゃ

Difficulties

What are difficulties to determine the structure of \mathbb{M}_* ?

- How to determine the exact dimension of \mathbb{M}_k ?
- How to construct generators? (Especially lower weight case)

In case of $\text{Sp}_2(\mathbb{Z})$, Igusa resolved these difficulties for the first time.

ション ふゆ マ キャット しょう くしゃ

Difficulties

What are difficulties to determine the structure of \mathbb{M}_* ?

- How to determine the exact dimension of \mathbb{M}_k ?
- How to construct generators? (Especially lower weight case)

In case of $\text{Sp}_2(\mathbb{Z})$, Igusa resolved these difficulties for the first time.

This was a bit complex way, however... To find new way is much easier than to find the first way.

ション ふゆ マ キャット マックシン

Difficulties

What are difficulties to determine the structure of \mathbb{M}_* ?

- How to determine the exact dimension of \mathbb{M}_k ?
- How to construct generators? (Especially lower weight case)

In case of $\text{Sp}_2(\mathbb{Z})$, Igusa resolved these difficulties for the first time.

This was a bit complex way, however...

To find new way is much easier than to find the first way.

Now we know many proofs of Igusa's theorem:

- Igusa (1962) : Origin
- Freitag (1965) : Zeros of the theta products
- A. (2000) : Jacobi forms
- van der Geer (2008) : Diagonal restriction

Structure theorem

To find new way is much easier than to find the first way.

Igusa's work stimurated the determination of the ring of modular forms of many kinds.

- Hilbert modular forms on real quadratic field
 - Gundlach (1963) : $\mathbb{Q}(\sqrt{5})$
 - Hammond, Hirzebruch, ... : $\mathbb{Q}(\sqrt{D})$
 - A. (2001) : $\mathbb{Q}(\sqrt{5})$ mixed weight
- Siegel modular forms of degree 2
 - Satoh (1986), Ibukiyama (2001), ... : vector valued
 - Igusa, Ibukiyama, Hayashida, Gunji, A., ... : with levels
 - Ibukiyama and Onodera (1997), Ibukiyama, Poor, Yuen (2013),
 - ... : paramodular forms
- Siegel modular forms of degree 3
 - Tsuyumine (1986)
- Hermitian modular forms of degree 2
 - Freitag (1967) : $\mathbb{Q}\sqrt{-1}$
 - Dern(1996) : $\mathbb{Q}\sqrt{-3}$
- Modular forms on O(2, n+2)
 - Krieg, Freitag, Salvati Manni, ...

Igusa's theorem

 \mathbb{M}_* : Graded ring of all Siegel modular forms w.r.t. $\mathrm{Sp}_2(\mathbb{Z})$

Theorem. (Igusa 1962)

- M_{*} is generated by 5 forms of weight 4, 6, 10, 12, 35.
- The first 4 generators are algebraically independent.
- The square of the last generator is in the ring generated by the first 4 generators. (He showed the explicit relations.)

$$\mathbb{M}_* = R \oplus \chi_{35}R, \qquad R = \mathbb{C}[E_4, E_6, \chi_{10}, \chi_{12}]$$

What are difficulties to determine the structure of \mathbb{M}_* ?

- How to determine the exact dimension of \mathbb{M}_k ?
- How to construct generators $E_4, E_6, \chi_{10}, \chi_{12}$ and χ_{35} ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How to determine the exact dimension?

How to determine the exact dimension of \mathbb{M}_k ?

- algebraic geometry
- trace formula
- another way

$$\sum_{k=0}^{\infty} (\dim \mathbb{M}_k) x^k = \frac{1+x^{35}}{(1-x^4)(1-x^6)(1-x^{10})(1-x^{12})}$$

How to construct generators?

How to construct generators $E_4, E_6, \chi_{10}, \chi_{12}$ and χ_{35} ?

- Eisenstein Series $(E_4, E_6, \chi_{10}, \chi_{12})$
- Theta constants $(E_4, E_6, \chi_{10}, \chi_{12}, \chi_{35})$ (by Igusa)
- Saito-Kurokawa lift, Maass lift $(E_4, E_6, \chi_{10}, \chi_{12})$
- Rankin-Cohen-Ibukiyama differential operator (χ_{35})
- Borcherds product (χ_{10}, χ_{35})

$$E_4 = ML(e_{4,1}),$$
 $E_6 = ML(e_{6,1})$
 $\chi_{10} = ML(\varphi_{10,1}),$ $\chi_{12} = ML(\varphi_{12,1})$

$$\chi_{35} = \det \begin{pmatrix} 4E_4 & 6E_6 & 10\chi_{10} & 12\chi_{12} \\ \frac{\partial}{\partial\tau}E_4 & \frac{\partial}{\partial\tau}E_6 & \frac{\partial}{\partial\tau}\chi_{10} & \frac{\partial}{\partial\tau}\chi_{12} \\ \frac{\partial}{\partial z}E_4 & \frac{\partial}{\partial z}E_6 & \frac{\partial}{\partial z}\chi_{10} & \frac{\partial}{\partial z}\chi_{12} \\ \frac{\partial}{\partial\omega}E_4 & \frac{\partial}{\partial\omega}E_6 & \frac{\partial}{\partial\omega}\chi_{10} & \frac{\partial}{\partial\omega}\chi_{12} \end{pmatrix}$$

SAC

Fourier expansion

Because
$$\begin{pmatrix} 1 & 0 & s & t \\ 0 & 1 & t & u \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \operatorname{Sp}_2(\mathbb{Z}) (s, t, u \in \mathbb{Z}), F \in \mathbb{M}_k$$
 satisfies
$$F\begin{pmatrix} \tau + s & z + t \\ z + t & \omega + u \end{pmatrix} = F\begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix}.$$

Hence $F \in \mathbb{M}_k$ has a **Fourier-expansion**

$$\mathbb{M}_k \ni F(Z) = \sum_{n,l,m \in \mathbb{Z}} a(n,l,m) q^n \zeta^l p^m.$$

 $\left(\begin{array}{cc} q^n := \mathbf{e}(n\tau) := \exp(2\pi\sqrt{-1}n\tau), \quad \zeta^l := \mathbf{e}(lz), \quad p^m := \mathbf{e}(m\omega) \end{array} \right)$

Proposition. (Koecher principle)

If m < 0 or if $4nm - l^2 < 0$, then a(n, l, m) = 0.

Fourier-Jacobi expansion

On Fourier-Jacobi expansion

$$\mathbb{M}_k \ni F(Z) = \sum_{m \in \mathbb{Z}} \varphi_m(\tau, z) p^m,$$

each $\varphi_m(\tau, z)p^m$ is invariant under the (weight k) action of

$$\mathrm{Sp}_2^{\mathrm{J}}(\mathbb{Z}) := \left\{ M \in \mathrm{Sp}_2(\mathbb{Z}) \ \left| \ M \begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} M^{-1} = \begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}.$$

Definition.

We say a holomorphic function $\varphi : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ is a **Jacobi form** of weight k and index m if $\varphi(\tau, z)p^m$ is invariant under the weight k action of $\operatorname{Sp}_2^{\mathrm{J}}(\mathbb{Z})$ and satisfies the Koecher principle.

 $\mathbb{J}_{k,m}$: $\mathbb{C}\text{-vector space of all Jacobi forms of weight }k$ and index m.

Jacobi forms

Jacobi forms

We say a holomorphic function $\varphi : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ is a **Jacobi form** of weight k and index m if φ satisfies the following three conditions:

•
$$\varphi(\tau, z) = (c\tau + d)^{-k} \mathbf{e} \left(\frac{-mcz^2}{c\tau + d}\right) \varphi \left(\frac{a\tau + b}{c\tau + d}, \frac{z}{c\tau + d}\right)$$

for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$

•
$$\varphi(\tau, z) = \mathbf{e} \left(m \left(x^2 \tau + 2xz \right) \right) \varphi(\tau, z + x\tau + y) \text{ for any } x, y \in \mathbb{Z}$$

• On the Fourier expansion $\varphi(\tau, z) = \sum_{\substack{n,l \in \mathbb{Z} \\ n,l \in \mathbb{Z}}} c(n,l)q^n \zeta^l$, c(n,l) = 0 if n < 0 or if $4nm - l^2 < 0$. $\left(q^n := \mathbf{e}(n\tau) := \exp\left(2\pi\sqrt{-1}n\tau\right), \ \zeta^l := \mathbf{e}(lz)\right)$ Here we assume $k, m \in \mathbb{Z}$.

M. Eichler and D. Zagier, *The theory of Jacobi forms*, Birkhäuser, 1985.

Jacobi forms and weak Jacobi forms

Definition.

We say a holomorphic function $\varphi : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ is a **weak Jacobi** form of weight k and index m if $\varphi(\tau, z)p^m$ is invariant under the weight k action of $\operatorname{Sp}_2^{\mathrm{J}}(\mathbb{Z})$ and c(n, l) = 0 (n < 0), where

$$\varphi(\tau,z) = \sum_{n,l \in \mathbb{Z}} c(n,l) q^m \zeta^l.$$

 $\mathbb{J}_{k,m}^{\mathrm{w}}$: space of all weak Jacobi forms of weight k and index m.

We can show:

• If
$$m < 0$$
, $\mathbb{J}_{k,m}^{w} = \mathbb{J}_{k,m} = \{0\}.$

• If m = 0, $\mathbb{J}_{k,0}^{w} = \mathbb{J}_{k,0} = \mathbb{M}_{k}$ (space of elliptic modular forms).

• If m > 0, $\mathbb{J}_{k,m}^{w} \supset \mathbb{J}_{k,m}$ and $\dim_{\mathbb{C}} \mathbb{J}_{k,m}^{w}$ is finite.

Overview

Igusa's theorem

Problems

Structure of weak Jacobi forms

Here,

$$\mathbb{J}^{\mathrm{w}}_{*,*} := \bigoplus_{k,m \in \mathbb{Z}} \mathbb{J}^{\mathrm{w}}_{k,m} \quad \text{and} \quad \mathbb{J}_{*,*} := \bigoplus_{k,m \in \mathbb{Z}} \mathbb{J}_{k,m}$$

are bi-graded rings.

Theorem. (M. Eichler and D. Zagier (1985))

 $\mathbb{J}_{*,*}$ is not finitely generated over \mathbb{C} , but

$$\mathbb{J}^{\mathsf{w}}_{*,*} = R \oplus \varphi_{-1,2}R, \quad R = \mathcal{M}_{*}[\varphi_{0,1}, \varphi_{-2,1}].$$

Remark. (well known)

The structure of the graded ring of elliptic modular forms is

$$\mathbf{M}_* := \bigoplus_{k \in \mathbb{Z}} \mathbf{M}_k = \mathbb{C}[e_4, e_6].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Siegel modular forms and Jacobi forms

Now we have

$$\mathbb{M}_k \ni F(Z) = \sum_{m=0}^{\infty} \varphi_m(\tau, z) p^m \implies \varphi_m \in \mathbb{J}_{k,m} \subset \mathbb{J}_{k,m}^w.$$

$$(\operatorname{Sp}_2(\mathbb{Z}) \text{ invariant }) \qquad (\operatorname{Sp}_2^J(\mathbb{Z}) \text{ invariant })$$

Proposition.

$$\operatorname{Sp}_2(\mathbb{Z})$$
 is generated by $\operatorname{Sp}_2^{\mathrm{J}}(\mathbb{Z})$ and $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ induces } F\begin{pmatrix} \tau & z \\ z & \omega \end{pmatrix} = (-1)^k F\begin{pmatrix} \omega & z \\ z & \tau \end{pmatrix}.$$

Overview

Igusa's theorem

Problems

Proof of Igusa's theorem

On Fourier(-Jacobi) expansion

$$\mathbb{M}_k \ni F(Z) = \sum_{m=0}^{\infty} \varphi_m(\tau, z) p^m$$
$$= \sum_{n,l,m \in \mathbb{Z}} a(n, l, m) q^n \zeta^l p^m$$

we have

$$a(n, l, m) = (-1)^k a(m, l, n).$$

Therefore, we have an injection

$$\mathbb{M}_k \ni F \mapsto (\varphi_m)_{m=0}^{\infty} \in \left(\prod_{m=0}^{\infty} \mathbb{J}_{k,m}\right)^{\text{sym}}$$

and

$$\sum_{k=0}^{\infty} \left(\dim \left(\prod_{m=0}^{\infty} \mathbb{J}_{k,m} \right)^{\text{sym}} \right) x^k = \frac{1+x^{35}}{(1-x^4) \left(1-x^6\right) \left(1-x^{10}\right) \left(1-x^{12}\right)}.$$

ション ふゆ マ キャット マックタン

Another proof

Key point of the proof

Reduce the number of variables, keep the discrete subgroup not so smaller.

This way (A. (2000)) Siegel modular forms \rightarrow Jacobi forms \rightarrow Elliptic modular forms Siegel paramodular forms with level < 4: Ibukiyama, Poor, Yuen

Another way (van der Geer (2008)) Siegel modular forms \rightarrow Modular forms on $\mathbb{H} \times \mathbb{H}$ \rightarrow Elliptic modular forms Siegel modular forms with level ≤ 4 : A., Ibukiyama

Similar way is avairable for Hilbert modular forms and Hermitian modular forms.

There is a simple unified structure...

Looking many results of the structure of the graded ring of modular forms, we find there is a simple unified structure.

For example:

Theorem. (Ibukiyama and A. (2005))

The graded ring of Siegel modular forms of degree 2 with level $N \leq 4$ has a very simple unified structure. (For N = 3, 4, we take a character.)

- There are 5 generators.
- The first 4 generators are algebraically independent.
- The last generator is obtained from the first 4 generators by using Rankin-Cohen-Ibukiyama differential operator.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sigel modular forms of degree 2 with levels

$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_{k}(\operatorname{Sp}_{2}(\mathbb{Z}))\right) x^{k} = \frac{1+x^{35}}{(1-x^{4})(1-x^{6})(1-x^{10})(1-x^{12})}$$
$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_{k}(\Gamma_{0}(2))\right) x^{k} = \frac{1+x^{19}}{(1-x^{2})(1-x^{4})(1-x^{4})(1-x^{6})}$$
$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_{k}(\Gamma_{0}'(3))\right) x^{k} = \frac{1+x^{14}}{(1-x)(1-x^{3})(1-x^{3})(1-x^{4})}$$
$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_{k}(\Gamma_{0}'(4))\right) x^{k} = \frac{1+x^{11}}{(1-x)(1-x^{2})(1-x^{2})(1-x^{3})}$$

Why unified??

Siegel paramodular forms of degree 2 with levels

Another example:

Theorem. (A. (2016))

Let Γ_N be a suitable subgroup of Siegel paramodular group of level N = 2, 3, 4. The graded ring of modular forms of Γ_N has a very simple unified structure.

(We take a character.)

- There are 6 generators of weights $4, 6, \frac{12}{N} 2, \frac{12}{N}, \frac{24}{N} 1, 12$.
- The first 4 generators are algebraically independent.
- The first 5 generators are obtained by a kind of Maass lift.
- The last generator is obtained from the first 5 generators by using Rankin-Cohen-Ibukiyama differential operator.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Siegel paramodular forms of degree 2 with levels

$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_k(\Gamma_2)\right) x^k = \frac{\left(1+x^{11}\right) \left(1+x^{12}\right)}{\left(1-x^4\right) \left(1-x^4\right) \left(1-x^6\right) \left(1-x^6\right)}$$
$$\left(4+4+6+6+3=11+12\right)$$

$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_k(\Gamma_3)\right) x^k = \frac{\left(1+x^7\right) \left(1+x^{12}\right)}{\left(1-x^2\right) \left(1-x^4\right) \left(1-x^4\right) \left(1-x^6\right)}$$
$$\left(2+4+4+6+3=7+12\right)$$

$$\sum_{k=0}^{\infty} \left(\dim \mathbb{M}_k(\Gamma_4)\right) x^k = \frac{\left(1+x^5\right)\left(1+x^{12}\right)}{\left(1-x\right)\left(1-x^3\right)\left(1-x^4\right)\left(1-x^6\right)}$$
$$\left(1+3+4+6+3=5+12\right)$$

Why unified??

ション ふゆ く は く は く む く む く し く

Thank you for your kind attention.



BOCCHAN and MADONNACHAN are the mascots of Tokyo University of Science.