Introduction to Arthur's multiplicity formula

Hiraku Atobe

Hokkaido University

October 30th 2019

1 Langlands Program for GL_n

2 Siegel modular forms

1 Langlands Program for GL_n

2 Siegel modular forms

• $F = \mathbb{Q}(\sqrt{D})$: real quadratic field (with narrow class number 1);

- χ_D : the Dirichlet character associated to F/\mathbb{Q} ;
- $S_{k,k}(SL_2(\mathcal{O}_F)) = \{ \text{Hilbert modular cusp forms of level one} \}.$

Theorem (Doi–Naganuma, 1969)

For any Hecke eigenform $f \in S_k(SL_2(\mathbb{Z}))$, there exists a Hecke eigenform $\hat{f} \in S_{k,k}(SL_2(\mathcal{O}_F))$ such that

$$L(s, \hat{f}) = L(s, f)L(s, f, \chi_D).$$

The proof used Weil's converse theorem for Hilbert modular forms.

How do we understand the Doi–Naganuma lifting? \rightarrow Use rep. theory.

For $f \in S_k(\mathrm{SL}_2(\mathbb{Z}))$, define an aut. form $\varphi_f \colon \mathrm{GL}_2(\mathbb{A}_\mathbb{Q}) \to \mathbb{C}$ by

$$\varphi_f(\gamma g\kappa) = (f|_k g)(\sqrt{-1}),$$

for $\gamma \in \mathrm{GL}_2(\mathbb{Q})$, $g \in \mathrm{GL}_2(\mathbb{R})^+$, $\kappa \in \mathrm{GL}_2(\widehat{\mathbb{Z}})$. It generates an irr. cusp. unitary aut. rep. τ_f of $\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}})$.

If F has narrow class number one, for $\hat{f} \in S_{k,k}(\mathrm{SL}_2(\mathcal{O}_F))$, we can define $\varphi_{\hat{f}} \colon \mathrm{GL}_2(\mathbb{A}_F) \to \mathbb{C}$ and $\tau_{\hat{f}}$ of $\mathrm{GL}_2(\mathbb{A}_F)$ similarly. All representations are over \mathbb{C} .

■ *F*: number field.

Let τ be an irr. adm. rep. of $\operatorname{GL}_n(\mathbb{A}_F)$. $\rightsquigarrow \tau \cong \otimes'_v \tau_v$ s.t. τ_v irr. adm. rep. of $\operatorname{GL}(F_v)$, τ_v is unramified for almost all $v < \infty$. \rightsquigarrow Godement–Jacquet *L*-function $L(s, \tau) = \prod_v L(s, \tau_v)$.

If τ_v unramified $\rightsquigarrow \{\alpha_{v,1}, \ldots, \alpha_{v,n}\} \subset \mathbb{C}$: Satake parameter $\rightsquigarrow L(s, \tau_v) = \prod_{i=1}^n (1 - \alpha_{v,i}q_v^{-s})^{-1}$.

Bound for Satake parameter

If τ is cuspidal unitary and τ_v is unramified, then $q_v^{-\frac{1}{2}} < |\alpha_{v,i}| < q_v^{\frac{1}{2}}$.

The Langlands Problem would classify aut. rep's. of $GL_n(\mathbb{A}_F)$.

Langlands Problem (1967, 1970)

We wish the existence of a locally compact group \mathcal{L}_F , which is "close to" $\operatorname{Gal}(\overline{F}/F)$ or the Weil group W_F , such that

 $\{\text{irr. cusp. aut. rep's. } \tau \text{ of } \operatorname{GL}_n(\mathbb{A}_F)\} \xleftarrow{1:1} \{n\text{-dim. irr. rep's. } \phi \text{ of } \mathcal{L}_F\}$

satisfying $L(s, \tau) = L(s, \phi)$, and some additional properties.

The group \mathcal{L}_F is called the *hypothetical Langlands group*.

As Galois groups, there should be $\mathcal{L}_{\mathbb{Q}(\sqrt{D})} \hookrightarrow \mathcal{L}_{\mathbb{Q}}.$ Hence

$$\begin{array}{c|c} f & & f \xrightarrow{} [\tau \text{ of } \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})] < & & & [\phi \colon \mathcal{L}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{C})] \\ & & & & & \downarrow \\ & & & & \downarrow \\ & & & & f \xrightarrow{} \\ f & & & & [\hat{\tau} \text{ of } \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}(\sqrt{D})})] < & & & & [\hat{\phi} \colon \mathcal{L}_{\mathbb{Q}(\sqrt{D})} \to \operatorname{GL}_2(\mathbb{C})] \end{array}$$

Generalization: For an extension E/F, the Base change lifting

BC: {irr. aut. rep's. of $\operatorname{GL}_n(\mathbb{A}_F)$ } \rightarrow {irr. aut. rep's. of $\operatorname{GL}_n(\mathbb{A}_E)$ }

is expected, and proven for E/F cyclic (Langlands, Arthur–Clozel).

Compatibility with the Local Langlands Correspondence

The local Langlands group \mathcal{L}_{F_v} is the Weil–Delige group

$$\mathcal{L}_{F_v} \coloneqq \begin{cases} W_{F_v} & \text{if } F_v \text{ is archimedean,} \\ W_{F_v} \times \mathrm{SU}(2) & \text{if } F_v \text{ is non-archimedean} \end{cases}$$

The LLC for GL_n is established by Langlands, Harris–Taylor, Henniart.

Local-Global compatibility

There should be an embedding $\mathcal{L}_{F_v} \hookrightarrow \mathcal{L}_F$ such that

$$\begin{bmatrix} \tau = \otimes_v \tau_v \text{ of } \operatorname{GL}_n(\mathbb{A}_F) \end{bmatrix} \xleftarrow{} \begin{bmatrix} \phi \colon \mathcal{L}_F \to \operatorname{GL}_n(\mathbb{C}) \end{bmatrix} \\ \downarrow \\ \downarrow \\ [\tau_v \text{ of } \operatorname{GL}_n(F_v)] \xleftarrow{} \operatorname{LLC} \overleftarrow{} [\phi_v \colon \mathcal{L}_{F_v} \to \operatorname{GL}_n(\mathbb{C})]. \end{bmatrix}$$

When $f = \sum_{n>0} a_f(n)q^n \in S_k(\operatorname{SL}_2(\mathbb{Z}))$ is a normalized Hecke eigenform, Deligne (1974) proved $|a_f(p)| \leq 2p^{\frac{k-1}{2}}$ (Ramanujan conjecture). \rightsquigarrow The Satake parameter $\{\alpha_p, \alpha_p^{-1}\}$ of $\tau_{f,p}$ satisfies $|\alpha_p| = 1$ since

$$1 - a_f(p)X + p^{k-1}X^2 = (1 - \alpha_p p^{\frac{k-1}{2}}X)(1 - \alpha_p^{-1}p^{\frac{k-1}{2}}X).$$

 \rightsquigarrow The irr. rep. $\tau_{f,p}$ of $\operatorname{GL}_2(\mathbb{Q}_p)$ is tempered.

Generalized Ramanujan conjecture

It $\tau = \otimes_v \tau_v$ is an irr. cusp. unitary aut. rep. of $\operatorname{GL}_n(\mathbb{A}_F)$, then τ_v is tempered for any v.

It is hoped that τ of $\operatorname{GL}_n(\mathbb{A}_F)$ is unitary $\iff \phi(\mathcal{L}_F)$ is bounded. By LLC, τ_v of $\operatorname{GL}_n(F_v)$ is tempered $\iff \phi_v(\mathcal{L}_{F_v})$ is bounded.

$$\begin{array}{c} \tau \text{ of } \operatorname{GL}_n(\mathbb{A}_F) \text{ is unitary} \overset{\operatorname{Langlands}}{\Leftarrow} \phi(\mathcal{L}_F) \text{ is bounded} \\ \\ \overset{\operatorname{II}}{\overset{\operatorname{II}}{\Leftrightarrow}} \overset{\operatorname{III}}{\overset{\operatorname{III}}{\Leftrightarrow}} \phi(\mathcal{L}_F) \text{ is bounded} \\ \\ \varphi \\ \tau_v \text{ of } \operatorname{GL}_n(F_v) \text{ is tempered} & \longleftrightarrow \phi_v(\mathcal{L}_{F_v}) \text{ is bounded} \end{array}$$

Observation

The existence of the hypothetical Langlands group \mathcal{L}_F implies the generalized Ramanujan conjecture.

What a big problem the existence of the hypothetical Langlands group is!

Theorem (Mœglin–Waldspurger, 1989)

Let π be in $L^2_{\text{disc}}(\text{GL}_n(F) \setminus \text{GL}_n(\mathbb{A}_F)^1) \subset L^2(\text{GL}_n(F) \setminus \text{GL}_n(\mathbb{A}_F)^1)$. Then π is the unique irr. quotient of the parabolically induced rep.

$$|\cdot|^{\frac{d-1}{2}} au \times |\cdot|^{\frac{d-3}{2}} au \times \cdots \times |\cdot|^{-\frac{d-1}{2}} au$$

for some $d \mid n$ and an irr. cusp. unitary aut. rep. τ of $\operatorname{GL}_{n/d}(\mathbb{A}_F)$.

It is hoped that τ of ${\rm GL}_{n/d}(\mathbb{A}_F)$ is unitary iff $\phi(\mathcal{L}_F)$ is bounded. Hence

$$\{\text{irr. aut. rep's. } \pi \text{ in } L^2_{\text{disc}}(\text{GL}_n(F) \setminus \text{GL}_n(\mathbb{A}_F)^1)\}$$

$$\stackrel{\wedge}{\underset{\forall}{1:1}} \{n\text{-dim. irr. rep's. } \psi = \phi \boxtimes S_d \text{ of } \mathcal{L}_F \times \text{SL}_2(\mathbb{C}) \text{ s.t. } \psi(\mathcal{L}_F) \text{ bdd.}\}.$$

1 Langlands Program for GL_n

2 Siegel modular forms

Symplectic group

A symplectic group is given by

$$\operatorname{Sp}_{2n}(\mathbb{R}) = \left\{ g \in \operatorname{GL}_{2n}(\mathbb{R}) \mid {}^{t}g \begin{pmatrix} 0 & \mathbf{1}_{n} \\ -\mathbf{1}_{n} & 0 \end{pmatrix} g = \begin{pmatrix} 0 & \mathbf{1}_{n} \\ -\mathbf{1}_{n} & 0 \end{pmatrix} \right\}.$$

Define the Siegel upper half space by

$$\mathfrak{H}_n = \left\{ Z \in \operatorname{Mat}_n(\mathbb{C}) \mid {}^t Z = Z, \ \operatorname{Im}(Z) > 0 \right\}.$$

The Lie group $\operatorname{Sp}_{2n}(\mathbb{R})$ acts on \mathfrak{H}_n by

$$g\langle Z \rangle = (AZ+B)(CZ+D)^{-1}, \quad g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \ Z \in \mathfrak{H}_n.$$

A hol. function $F: \mathfrak{H}_n \to \mathbb{C}$ is a holomorphic Siegel cusp form of weight k if $(F|_k\gamma)(Z) = F(Z)$ for $\gamma \in \mathrm{Sp}_{2n}(\mathbb{Z})$ and $Z \in \mathfrak{H}_n$, where

$$(F|_k g)(Z) \coloneqq \det(CZ + D)^{-k} F(\gamma \langle Z \rangle), \quad g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_{2n}(\mathbb{Z}),$$

and a cusp condition. Write

 $S_k(\operatorname{Sp}_{2n}(\mathbb{Z})) = \{ \text{holomorphic Siegel cusp form of weight } k \}.$

As well as the case of n = 1, there is a Hecke theory.

A Hecke eigenform $F \in S_k(\operatorname{Sp}_{2n}(\mathbb{Z}))$ gives a cusp form $\varphi_F \colon \operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ by

$$\varphi_F(\gamma g\kappa) = (F|_k g)(\sqrt{-1} \cdot \mathbf{1}_n)$$

for
$$\gamma \in \mathrm{Sp}_{2n}(\mathbb{Q})$$
, $g \in \mathrm{Sp}_{2n}(\mathbb{R})$, $\kappa \in \mathrm{Sp}_{2n}(\widehat{\mathbb{Z}})$.
It generates an irr. cusp. aut. rep. $\pi_F = \otimes'_v \pi_{F,v}$ of $\mathrm{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})$.

Goal

To classify $F \in S_k(\operatorname{Sp}_{2n}(\mathbb{Z}))$, or π_F of $\operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})$.

Before global, recall the local classification.

• $\mathcal{L}_{\mathbb{Q}_v}$: local Langlands group of \mathbb{Q}_v (Weil or Weil–Deligne group).

Local Langlands correspondence (Langlands 1989, Arthur 2013)

There is a canonical surjection

$$\operatorname{Irr}(\operatorname{Sp}_{2n}(\mathbb{Q}_v)) \to \{\phi_v \colon \mathcal{L}_{\mathbb{Q}_v} \to \operatorname{SO}_{2n+1}(\mathbb{C})\} / \cong$$

such that

1 the fiber Π_{ϕ_v} of ϕ_v is finite, and called an *L*-packet;

2 $\pi_v \in \Pi_{\phi_v}$ is tempered $\iff \phi_v(\mathcal{L}_{\mathbb{Q}_v})$ is bounded.

As GL_n -case, one might naively hope that there exists a surjection with commutative diagram

$$\begin{aligned} \{ \text{irr. cusp. aut. rep's. of } \operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}}) \} & \xrightarrow{??} \{ \phi \colon \mathcal{L}_{\mathbb{Q}} \to \operatorname{SO}_{2n+1}(\mathbb{C}) \} \\ & \underset{v}{\operatorname{Icocalization}} \\ & \underset{v}{\operatorname{Irr}}(\operatorname{Sp}_{2n}(\mathbb{Q}_{v})) \longrightarrow \{ \phi_{v} \colon \mathcal{L}_{\mathbb{Q}_{v}} \to \operatorname{SO}_{2n+1}(\mathbb{C}) \} . \end{aligned}$$

But, if it were true, any irr. cusp. unitary aut. rep's. $\pi = \otimes'_v \pi_v$ of $\operatorname{Sp}_{2n}(\mathbb{A}_F)$ would satisfy the Ramanujan conjecture, i.e., π_v would be tempered. However, the Ramanujan conjecture does not hold in general. For example:

Saito-Kurokawa lifting (1977-1981)

For a Hecke eigenform $f \in S_{2k}(SL_2(\mathbb{Z}))$ with <u>odd k</u>, there exists a Hecke eigenform $F_{SK} \in S_{k+1}(Sp_4(\mathbb{Z}))$ such that

$$L(s, F_{\rm SK}, {\rm std}) = \zeta(s)L(s+k-1, f)L(s+k, f).$$

For the irr. cusp. aut. rep. $\pi_{SK} = \otimes'_v \pi_{SK,v}$ generated by $\varphi_{F_{SK}}$, its local factor $\pi_{SK,p}$ is non-tempered for any $p < \infty$.

How should we understand? (Why is k odd?)

{1

Describe not the cuspidal spectrum but the discrete spectrum. Hinted by the result on the discrete spectrum for $GL_N(\mathbb{A}_F)$:

Arthur conjecture (1989)

$$\{ \text{irr. aut. rep's. } \pi \text{ in } L^2_{\text{disc}}(\operatorname{Sp}_{2n}(\mathbb{Q}) \setminus \operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \}$$

$$\downarrow^{??}_{\forall}$$

$$\psi \colon \mathcal{L}_{\mathbb{Q}} \times \operatorname{SL}_2(\mathbb{C}) \to \operatorname{SO}_{2n+1}(\mathbb{C}) \text{ s.t. "elliptic" and } \psi(\mathcal{L}_{\mathbb{Q}}) \text{ bdd.} \}.$$

If $f \in S_{2k}(\mathrm{SL}_2(\mathbb{Z})) \rightsquigarrow \tau_f$ of $\mathrm{GL}_2(\mathbb{A}_\mathbb{Q}) \rightsquigarrow \phi_f \colon \mathcal{L}_\mathbb{Q} \to \mathrm{SL}_2(\mathbb{C})$, then π_{SK} should correspond to

$$(\phi_f \boxtimes S_2) \oplus \mathbf{1} \colon \mathcal{L}_{\mathbb{Q}} \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{SO}_5(\mathbb{C}).$$

As the local analogue, associated to a *local A-parameter*

 $\psi_v \colon \mathcal{L}_{\mathbb{Q}_v} \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{SO}_{2n+1}(\mathbb{C}) \quad \text{s.t. } \psi_v(\mathcal{L}_{Q_v}) \text{ bdd.},$

Arthur himself construct a multi-set Π_{ψ_v} over $\operatorname{Irr}_{\operatorname{unit}}(\operatorname{Sp}_{2n}(\mathbb{Q}_v))$, which is called the *local A-packet* (c.f., the talks of Oshima and Oi).

Theorem (Mœglin (2006), Arancibia–Mœglin–Renard (2018), Mœglin–Renard (to appear), Arancibia–Mezo (in progress))

The local A-packet Π_{ψ_v} is multiplicity-free, i.e., it is in fact a subset of $\operatorname{Irr}_{\operatorname{unit}}(\operatorname{Sp}_{2n}(\mathbb{Q}_v))$. Associated to a "global A-parameter" $\psi \colon \mathcal{L}_{\mathbb{Q}} \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{SO}_{2n+1}(\mathbb{C})$, we define the global A-packet by the restricted tensor product

$$\Pi_{\psi} = \otimes'_{v} \Pi_{\psi_{v}}.$$

"Theorem" (Arthur's multiplicity formula, 2013)

For each ψ , there exists a subset $\Pi_{\psi}(\varepsilon_{\psi}) \subset \Pi_{\psi}$ such that

$$L^2_{\operatorname{disc}}(\operatorname{Sp}_{2n}(\mathbb{Q})\backslash \operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \cong \bigoplus_{\psi} \bigoplus_{\pi \in \Pi_{\psi}(\varepsilon_{\psi})} \pi.$$

Interpretation of the definition of $\boldsymbol{\psi}$

Recall that
$$\psi \colon \mathcal{L}_{\mathbb{Q}} \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{SO}_{2n+1}(\mathbb{C}).$$

Problem

How should we define ψ without using $\mathcal{L}_{\mathbb{Q}}$?

Idea

Use an expectation

 $\{n\text{-dim. irr. rep's. } \phi \text{ of } \mathcal{L}_{\mathbb{Q}}\} \xleftarrow{1:1} \{\text{irr. cusp. aut. rep's. } \tau \text{ of } \operatorname{GL}_{n}(\mathbb{A}_{\mathbb{Q}})\}$

as a building block of global A-parameters.

c.f., Morimoto's talk.

Define $\mathcal{S}_k(\mathrm{Sp}_{2n}(\mathbb{A}_\mathbb{Q}))$ as the image of

$$S_k(\operatorname{Sp}_{2n}(\mathbb{Z})) \ni F \mapsto \varphi_F \in L^2_{\operatorname{disc}}(\operatorname{Sp}_{2n}(\mathbb{Q}) \setminus \operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})).$$

Then

$$\mathcal{S}_k(\mathrm{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \cong \bigoplus_{\psi} \bigoplus_{\pi \in \Pi_{\psi}(\varepsilon_{\psi})} (\pi \cap \mathcal{S}_k(\mathrm{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}}))).$$

Problem

When is there $\pi \in \Pi_{\psi}(\varepsilon_{\psi})$ such that $\pi \cap \mathcal{S}_k(\operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \neq 0$?

We consider 3 Steps.

By the holomorphy condition and weight condition of $S_k(\operatorname{Sp}_n(\mathbb{Z}))$, if $\pi = \otimes'_v \pi_v \in \Pi_{\psi}$ satisfies $\pi \cap \mathcal{S}_k(\operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \neq 0$, then π_{∞} is the *lowest weight module* $\mathcal{D}_k^{(n)}$ of $\operatorname{Sp}_{2n}(\mathbb{R})$ of weight k, which imposes strong conditions on ψ_{∞} .

If k > n, then D_k⁽ⁿ⁾ is discrete series.
 In this case, ψ_∞ is so-called Adams–Johnson, which is easier (c.f., Oshima's talk).

By the level one condition of $S_k(\operatorname{Sp}_n(\mathbb{Z}))$, if $\pi = \otimes'_v \pi_v \in \Pi_{\psi}$ satisfies $\pi \cap \mathcal{S}_k(\operatorname{Sp}_{2n}(\mathbb{A}_{\mathbb{Q}})) \neq 0$, then π_p is an *unramified* rep. of $\operatorname{Sp}_{2n}(\mathbb{Q}_p)$ for any p, which implies $\psi_p \colon \mathcal{L}_{\mathbb{Q}_p} \times \operatorname{SL}_2(\mathbb{C}) \to \operatorname{SO}_{2n+1}(\mathbb{C})$ is *unramified*.

Theorem (Mœglin, 2009)

If ψ_p is unramified, then Π_{ψ_p} contains a unique unramified rep. π_p^0 . Moreover, if $\psi_p = \bigoplus_i (\phi_i \boxtimes S_{d_i})$ with $\dim(S_d) = d$, then

$$L(s, \pi_p^0, \text{std}) = \prod_i \prod_{j=1}^{d_i} L\left(s + \frac{d_i + 1}{2} - j, \phi_i\right).$$

c.f., Oi's talk.

26 / 28

If $\mathcal{D}_k^{(n)} \in \Pi_{\psi_{\infty}}$ and if ψ_p is unramified with $\pi_p^0 \in \Pi_{\psi_p}$ for all p, then $\pi = \mathcal{D}_k^{(n)} \otimes (\otimes'_p \pi_p^0) \in \Pi_{\psi}$. Next problem is whether $\pi \in \Pi_{\psi}(\varepsilon_{\psi})$ or not (i.e., π is automorphic or not).

Example: Ikeda lifting

Let $f \in S_{2k}(SL_2(\mathbb{Z}))$ be associated with $\phi_f \colon \mathcal{L}_{\mathbb{Q}} \to SL_2(\mathbb{C})$. Consider

$$\psi_f^{(2n)} = (\phi_f \boxtimes S_{2n}) \oplus \mathbf{1} \colon \mathcal{L}_{\mathbb{Q}} \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{SO}_{4n+1}(\mathbb{C}).$$

Then
$$\pi_p^0 \in \Pi_{\psi_{f,p}^{(2n)}}$$
 and $\mathcal{D}_{k+n}^{(2n)} \in \Pi_{\psi_{f,\infty}^{(2n)}}$ if $k > n$. Moreover,
$$\pi = \mathcal{D}_{k+n}^{(2n)} \otimes (\otimes_p' \pi_p^0) \in \Pi_{\psi}(\varepsilon_{\psi}) \iff k \equiv n \mod 2.$$

There are several applications of Arthur's multiplicity formula:

- Classification of modular forms (in particular, existence of liftings).
- The (strong) multiplicity one theorem for $S_k(\operatorname{Sp}_{2n}(\mathbb{Z}))$.
- The dimension of $S_k(\mathrm{Sp}_{2n}(\mathbb{Z}))$.
- The rigidity property.
- Towards the Harder conjecture.

Thank you very much.