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Automorphic L-functions, |

F: number field with adele ring A
G: reductive group over F

m: irreducible cuspidal automorphic representation of G(A)

vvyyypy

T = ®|,m,: restricted tensor product, where 7, is unramified
for almost all places

LG: L-group of G
p: LG — GL,(C).

vy



Automorphic L-functions, Il

For an unramified place:

» Satake isomorphism: m, unramified <+ Satake parameter t, (a
semi-simple conjugacy class in GV).

> q, =#0,/Py
» Local L-function:
1
det(/ — p(t,)qv )

Fix a finite set of places such that 7, is unramified if v ¢ S.
Define global partial L-function:

L5(577T7P) = H Ly(s,my,p).
vegS

Lv(saﬂ—v:p) =

This is compatible with the Langlands correspondence in Atobe's
talk.



Automorphic L-functions, Ill

Basic question
Show that L°(s, 7, p) admits meromorphic continuation to C, and
has a functional equation for s — 1 — s.

Basic method

Find a global integral that represents the desired L-function.

To obtain an Euler product, almost all examples use some kind of
multiplicity one results.

Examples

» Godement-Jacquet integrals: matrix coefficients (so ... works
for all cuspidal representations)

» Rankin-Selberg integrals for GL,, x GL, (Jacquet —
Piatetski-Shapiro — Rallis): uniqueness of Whittaker models

» Langlands-Shahidi method: uniqueness of Whittaker models

» Doubling integrals (Piatetski-Shapiro — Rallis): matrix
coefficients and ...



Automorphic L-functions, IV

This talk
A generalization of the doubling integrals — twisted doubling
integrals.
Main references:
» arXiv 1710.00905 (with Friedberg, Ginzburg and Kaplan)

» arXiv 1908.10298

We will discuss the obstructions that arise when extending these
constructions.



The doubling zeta integrals, |

> W = (W, (, )): aquadratic space over F
> W: vector space over F of dimension n
» (, ): non-degenerate bilinear form on W

» G = G(W): isometry group of W.
Examples: Sp,y,, Op.



The doubling zeta integrals, Il

The doubling map
Define W= = (WY, (, )F) where
WH = W, e W

and
(s x2), (s y- N = O y) = (o).

Define G2 = G(W").
The group G x G acts on W" via

(81, 82) - (x4, x-) = (g1x1, g2x-)-
This gives a homomorphism

1:GxG— GY.



The doubling zeta integrals, Il

Siegel parabolic subgroup
Define
WA = {(x,x) € W : x e W}.

Then (, )Y|waywa =0, i.e. WA is a totally isotropic subspace.
This gives a Siegel parabolic subgroup P(W2) = M(WA)N(W?A)
or P= MN.

Eisenstein series
>y FX\AX — C*

» y odet is a character of GL,(F)\GL,(A); this gives a
character of M(F)\M(A)
T dC(A) s
> I(s,x) = Indp 4) (x odet) - 0%

» £(5) ¢ I(s,x), one attaches an Eisenstein series

EFNE) = > fOe).

YEP(F)\GH(F)



The doubling integrals, IV

» 7 irreducible cuspidal representation of G(A)
> ¢ emand §2€7TV

Global zeta integral
Z(6 W&, ) =

&1(g1)62(22) E(FO))(u(g1, g2)) dgr dgo.
G(F)\G(A)xG(F)\G(A)



The doubling integrals, V

Unfolding

Z(6 K&, ) = / P(m(g)e1 KW &)F ) (u(g, e)) dg.
G(A)

where

PR &) = / ()6 (e) de.
G(F)\G(A)

This is an Euler product since P is decomposable and local
components of one-dimensional representations are
one-dimensional.

Unramified calculation

Z(&1 R &, FO) = L(s, 7 x x).



The twisted doubling integrals, |

Goal: tensor product L-function G x GLy.
The doubling map

> WHK = (WK ([ YEK) where

> Wok=wlo...o W
> <7 >D’k:<7 >Ilj@"'@<7 >E
> GEI,k — G(WD’k)
> (g1,82) € G x G acts on W5k via
(&1, 82) (X1, X1 Xop, X2y = =+ 5 Xpeey Xi—)
=(g1x1+, 82X1—, 81X0+, 81X2—, " ** 5 81Xk B1Xk—)-

This defines a homomorphism ¢4 : G x G — G2k



The twisted doubling integrals, Il

Siegel parabolic subgroup

Define
WAk =W, o ..o WA

Define P = P(WAK) ¢ GH:*

Fourier coefficient in the orbit ((2k — 1)"1")

In one moment. This does not appear when k = 1.

Eisenstein series
Given 7 on the group GL,(A), want to define a representation on
GLn(A) which looks like

T o det.

This appears in Atobe's talk — the generalized Speh
representations.



Degenerate Whittaker models/coefficients, |

Nilpotent orbits
Let Ay be the set of nilpotent elements in a semisimple Lie algebra
g. Under the adjoint action, it becomes a disjoint union of
nilpotent orbits.

» There is a partial order on the set of nilpotent orbits

» GL, case: the theory of Jordan canonical form

» Nilpotent orbits of GL, are in bijection with partitions of n.

P For classical groups, nilpotent orbits are in bijection with
partitions with additional assumptions.



Degenerate Whittaker models/coefficients, I

Examples
The orbit (32):

0 00
10 00
10 1000
0 ofe =191 0 0
10 1000
10 0100

Observe: image of
GL2 — GLs, g+ diag(g.&,8)

lies in the stabilizer of f32).
Generalization: for the orbit (k"), its stabilizer contains the image
of

GL, = GLjp, g — diag(g,g, - ,8)-



Degenerate Whittaker models/coefficients, Il

Example: orbit (3%1?)

= O
= O
= O
= O

Note: the image
GL2 X GL2 — GLg,

lies in the stabilizer of f(z2;2).

o= OO
= O O O

or f(3212) =

o = OO
= O O O

o O

(&1,82) — diag(g1, 81,81, 82)

o O

o O

o O




Degenerate Whittaker models/coefficients, 1V

This can be generalized to the orbit ((2k — 1)"1"):
one can choose a nice representative so that the stabilizer of this
representative contains the image of

GL,xGL, — GLoxp, (81, &2) — diag(g1, 82,81, 81, ,81,81)-



Degenerate Whittaker models/coefficients, V

The Whittaker model
This is attached to the orbit (n):
For example, if G = GL, and

1 up * *

1 un3 *

N=<u= 1 *
1

A generic character is of the form

Yn(u) = Y(ur2 + uz + -+ + Up—1,n)

where 1) is a nontrivial additive character of F\A.



Degenerate Whittaker models/coefficients, VI

One can write this as

Un(u) = d(tr(fnyu))

where



Consider

I X1 Y
Ny =qu= I X
/

Y2y (u) = Y(tr( X1 + X2)).

and

Equivalently,
Y2y (u) = P(tr(fizzyu)).



Degenerate Whittaker models/coefficients, VII

Whittaker pair (S, )

> (S,p) € g X g* such that S is rational semi-simple and
ada(S)() = ~2¢.
» Using the Killing form, ¢ <> f € g, and f is nilpotent

Degenerate Whittaker model
> g = &®;g; according to eigenvalues of S; assume that 1 is not
an eigenvalue
> n=@;~19; and N = exp(n)

» |, is a character of n and hence a character 1y of N



Degenerate Whittaker models/coefficients, VIII

Degenerate Whittaker models/coefficients
For a representation 7, locally we consider

HOHIN(W, ¢N)

Globally, for ¢ € w, we consider
/ f(ug)un(u) du.
N(F)\N(A)

Nilpotent orbit attached to a representation

We say that the nilpotent orbit attached to a representation 7 is O
if O is the maximal nilpotent orbit that supports a nonzero
degenerate Whittaker model/coefficient.



Generalized Speh representations

Fix an integer n.
» 7: irreducible cuspidal automorphic representation of GL(A)

» Let O(n, 7) be the unique irreducible quotient of

7|2 (0732 x| (202
In other words,
T € Irrgen(GLy) — 0(n, ) € Irr(GLgp).

Key properties:
» the nilpotent orbit attached to 6(n, 7) is (k").

> at every local place v, there is a unique model of degenerate
type for 6(n, 7),.



The twisted doubling integrals, Il
A Fourier coefficient in the orbit ((2k — 1)"1")

One can choose a nice pair in the orbit ((2k — 1)"1") which gives
(U, 9y) such that

Lk(G X G) C Stab(U,”l/Ju).

(This does not appear when k = 1.)
Eisenstein series
» 7 irreducible cuspidal automorphic representation of GL(A)
» 0O(n,7): the generalized Speh representation of GLj,(A)
> I(s.6(n,7)) = nd§ .\ 6(n.7) - 63
> () € I(s,0(n, T)), one attaches an Eisenstein series

EfNe) = > O

1EP(F)\GTH(F)



The twisted doubling integrals, IV

» 7 irreducible cuspidal representation of G(A)
> Semand HenY

The global integral
We define Z(&; K &, £(9))

§1(81)62(82):

G(F)\G(A)xG(F)\G(A)

/ E(FO)(u - (g1, £2)) vu(u) der dea.
U(F)\U(A)



The twisted doubling integrals, V

Unfolding

Z(&1 X &, F)) = Euler product...

Unramified calculation

Z(& X &, f(s)) ~ L(s,m x T).



Quaternionic unitary groups, |

D: quaternion algebra over F
W is a free left D-module of rank n
(, ): a non-degenerate quadratic form on W
G=GW)

» G is an inner form of Sp,,, or Oap.
Observations:

» One has to construct the generalized Speh representations on
GLn,p(A) as the inducing data in the Eisenstein series. And
verify expected properties.

» The other parts of twisted doubling integrals work without
essential change.

How to construct 67



Quaternionic unitary groups, Il

Question

What can we say about the category Rep(GLg, p)?

Fact: Most irreducible representations of GLy p do not have
unique models.

Example

» There is no nontrivial nilpotent elements in D*.
(Nilpotent orbits of GLy p are classified by partitions of k.)
» So the only irreducible representations of D* that have
unique models are the one-dimensional representations.



Quaternionic unitary groups, Il

Naive option

7 € Irr(GLg p) — 6(n, 7) € Irr(GLn p)-
such that the nilpotent orbit attached to 6(n,7) is (k")p.

Outcomes

» If this construction is possible, then we will obtain the tensor
product L-function for G x GL p.

» However, the orbit attached to 0(n, 7) might not be correct.



Quaternionic unitary groups, 1V

Another option
A construction

T € Irrgen(GLk) = Op(n, 7) € Irr(GLykp p).
It can be constructed by the following diagram:

Irr(GLokp)

0(2n, —
[JL|

0p(n, —
IITgen(G'Lk) L II’I“(GLkn’D)

Here: |JL| is the Jacquet-Langlands correspondence in
[Badulescu,2008] and [Badulescu-Renard, 2010], which is
local-to-global compatible.



Quaternionic unitary groups, V

» Obtain L-funtion for G x GLg r; more natural when applying
the Converse Theorem.

» The expected properties seems correct (at least at unramified
places); but not easy to prove in general.



Quaternionic unitary groups, VI

A special instance

Let 7 be an n-dimensional irreducible representation of D* with
n > 1. Let 6(2,7) be the unique irreducible subrepresentation of
7 X 7. Here v : D* — C* is the reduced norm. Then one expects

dim Homp(6(2,7),¥n) = 1.

1 x -

Here N = {( 1)} C GLyp and ¥y (1 ){) = 1)(x) for a

nontrivial additive character ¢ of D.



