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Introduction

This is the enhanced version talk note of the summer school 2005 at Hakui in Ishikawa
Prefecture. I gave two talks, one hour for each. The former is mainly about the cohomology
groups of Hilbert modular varieties, the latter about the interpretation as moduli spaces of
abelian varieties with real multiplication. Hence the contents of talks are of basic level. What
might be the hope and intension of the organizers and the audience, in two hours the possible
thing is very limited.

There are still many problems for Hilbert modular varieties and Hilbert modular forms.
I hope this might be of some help who are interested in this theme.

The author thanks to Kei-ichi Gunji for correction of many typos and some discrepancy
in the preliminary version.

1 Introduction of Hilbert modular varieties

One way to introduce Hilbert modular varieties is to regard them as moduli spaces of abelian
varieties with maximal real multiplication. Namely let F' be a totally real number field of
degree g = [F': Q], 0 an order of F, then we consider the moduli space of abelian varieties A
of dimension g with a ring homomorphism 6 : 0 — End(A). For simplicity as the order o of
F', we consider only the integer ring Op of F.

Let A be defined over the complex number field C, then its tangent space at the identity
V = Lie(A) is canonically an Op ® C-module, which is automatically of rank 1 by the
condition of the dimension of A. If we denote by P (F) the set of equivalence classes of the
infinite places of F, we have the canonical decomposition:

Or ®z C = @ Ce,.
VEPoo (F)

Here e, is the primitive idempotent of O ® C corresponding to the place v. By definition
we have 1 = ) e,, and we have the associated decomposition of V:

V= @ Vi (Vy =e,V, for each v € Py (F)).

To have A as a complex torus, we have to specify its lattice L such that A = V/L. Since the
rank of L over Z is 2g, it should be a projective O p-module of rank 2. As known in Algebraic
Number Theory, such L is isomorphic to a direct sum Op @ a~! with a fractional ideal a=*
in F.

To have a complex tours V/L is equivalent to assure that

(i) there is an injective homomorphism ¢ : L — V



(ii) with the quotient V/yp(L) being compact.
In this case, we also say that L is a Op-lattice of V.
Definition 1.1 For a fixed L and V' We set
X*:=Homop, (L, V):={¢: L -V | (L) is a lattice }.

Fix an injection L in F? once for all. This is equivalent to fix a marking o : L®z Q = F2.
We have to define also §: V = Op ®z C. Under these markings, to specify ¢ is equivalent to
specify the pair of elements z = p(e1), w = @(e2) in Op ®z C with e; = (1,0), eo = (0,1) €
F2. And the condition that (L) is a lattice is equivalent to

Im(z,w, — Zyw,) # 0 for each v € Py (F).

Thus we have to consider X* consisting of a pair of points z, w satisfying the above condition.
We can write X* as a sum of 29 connected components X7, such that each of them is
consisting of the pair (z,w) with specified signatures

gy = sign{Im(z,w, — Zyw,)} € {£} for each v € Py (F).
) with po = {1}

To recover the original X* from X*, we have to ‘forget’ o, 8. To forget § is to consider
the quotient of X* under the action of the unit group (Or ® C)* of Op ® C . It is easy to see
that each component f(; is stable under this unit group. As an representation of each orbit
under this unit group, we may choose an element of the form (z,1) in X*. Thus we have a
natural identification:

Here € = (g4)yep.. () is a vector of signs belonging to ,u§°°

X*/(0p®C)* = (C-R)Y = JH: = Xoo

where each H; is given by

H. = {z = (2,) | sign(Im(z,)) = e} = X! /(O @ C)*.
Next we can forget the marking « i.e., the choice of special basis eq, ep in F2 or in Op @ a™*
by taking the quotient with respect to the action of GLo,(Or @ a). Thus the double coset
space .

X*>GLo,.(Op ® a)\X*/(Op ® C)* = GLo,(L)\Xx

is the moduli space of complex Op-tori, the space parametrizing the isomorphism classes of
the whole complex Op tori.

In order to pass from complex tori to abelian varieties, we have to choose polarizations on
tori if they exist. There exist many polarizations on each A. We have to specify them. This
problem is discussed later in the section of “Polarization and weak Polarization.” RIGHT??7?

From now on, we fix a subgroup I' in GLJ (F) commensurable with GL3 (OF), and form
the associated quotient V' = Vp . = I'\H,. In the first part of this note, we recall the basic
results on the cohomology groups of this variety.



2 Part A: Hilbert modular variety V1. as a complex algebraic
variety

2.1 Singularities inside

The group T' acts on H. properly discontinuously. The elements in the center Z(I') =
I'N Z(GL3 (OF)) acts on H. trivially. For a given point z in H., the stablizer I', in T is
equal to I' N GRZ. Here GR, is the stabiliser of z in Gr = GL(2, F ®q R) is isomorphic
to a compact abelian group SO(2)¢ modulo center Z(Gg) (G =the identity component of
GL3 (F ®qR)). Therefore I',/Z(T) is a finite abelian group. Hence the singularities of the
complex analytic space V is at most quotient singularities by finite abelian groups. There are
only finite number of such singularities modulo I'. The conjugacy classes in I' represented by
non-central elements in some I', are called elliptic conjugacy classes.

Remark The elliptic singularities are so mild that even at such point z the local cohomology
group with rational coefficients Hz‘x}(V, Q) := H*(V, mod V — {z}, Q) satisfies the axiom of
Poincaré, hence we have Poincare duality theorem with rational coefficients. As such V is
said to be rationally smooth.

You can find detailed descriptions of examples for this kind of singularities in the cases
of surfaces, if you consult with the books of Hirzebruch [16] or van der Geer [17].

2.2 Algebraicity

Theorem 2.1 The quotient V is a quasi-projective variety over C.

Proof. The first essential result is due to Siegel, who showed that the field of meromorphic
functions on V has transcendental degree g over C. This implies that V' is an algebraic variety.
Afterward, the compactification of such varieties are considered (i.e., Baily-Borel, Satake
compactification, which is now refered as the minimal compactification sometimes). These
compactification are mapped to a projective space, by linear system spanned automorphic
forms including Eisenstein series. The image in the projective space has finite number of
singularities corresponding to cusps.

Remark Now Siegel’s result is an immediate consequence of the dimension formula of modular
forms.

2.3 Cusps and the minimal compactification

The space H. has the rational boundary component P!(F) = F U {co} with respect to
GLy(F), which is the homogeneous space. The set of cusps is the double coset space
I\PY(F) = I'\GL2(F)/BF, which is a finite set by Reduction Theory of linear algebraic
groups over number fields (¢f. [Borel], [Platonov]).

The minimal compactification V* of V is the union V UT\P!(F) as a set. We have to
define a natural topology and the natural structure of normal analytic space around these
newly attached finite number of points. Each cusp c¢ is mapped to the cusp oo by an element
§ in SL(2, F). Therefore, replacing SL(2,O) by its transform I := § "'SL(2, Or)d, we may
regard the cusp is co. Then its stabilizer of co in SL(2,OF), the Borel subgroup B and the
unipotent radical Nr are given by

o e m % . 1 m
S



The intersections IV N Ng and IV N Br are of the form:

(7 mend. {6 2)menen)

respectively, with a fractional ideal M, in F' and a subgroup V. of finite index in the unit
group Op of Op.
The space V* is a compact complex analytic variety with cusps singularities along cusps.

2.4 Toroidal compactifications

The toroidal compactification is the method to attach divisors at infinity to compactify V *.
This is defined, depending on the optional data on r.p.p decomposition associated to the
unipotent radical N, of the parabolic subgroup P, associated with the cusp c.

Resolution of cusp singularities of Hilbert modular varieties might be the easiest examples
of toroidal compactifications.

In the case of surfaces (g = 2), there is a detailed description of resolution obtained by
continued fractions.

See the paper of Ehlers [15] for general n.

3 Part B: Cohomology groups of Hilbert modular varieties

We review the basic results on the cohomology groups H*(V,C) for V = Vp .. In the elliptic
modular case, there is the isomorphism of Eichler-Shimura. For higher dimensional case, this
was generalized by Yozo Matsushima for cocompact case. A. Borel had been the leading
person to extend this kind results to non-cocompact case.

In the Hilbert modular case, it suffices to review some old result of Matsushima-Shimura
[6], and for non-cocompact case the result of Harder and the speaker of this talk.

3.1 Matsushima-Shimura isomorphism (cocompact case)

The cohomology groups consists of two parts: one is the universal part “not depending on
I and the “essential” part described in terms of Hilbert modular forms. Before discussing
the Hilbert modular case where I' has cusps, hence V is non-compact, we firstly consider the
case when I' is a cocompact discrete subgroup of G = SL(2,R)"™ x Gy (G a compact group,
normally a product of SU(2)’s). We assume that I" is irreducible throughout in this section,
i.e., the projection. to any factor SL(2,R)™ (m < n) of G has dense image.

3.1.1 The finite dimensional representations of G and the associated sheaf

Any complex irreducible representation p of G with finite dimension is of the form p = p’ ® o,
with p’ a finite dimensional irreducible representation of SL(2,R)", and o an irreducible
continuous representation of the compact group Gy. Moreover p/ = ®?:18ymki with each
Sym*i the symmetric tensor representation of degree k;

Sym" : SLy(R) — G Ly, 1(C).

We denote the pull-back of this representation to the subgroup I' by £ = E,. When I'
is torsion-free, it is a representation of the fundamental group m1(V,*) = I' of E, hence
corresponds to a local system F = Ep. When T has torsion elements, we firstly assume that
—15 acts trivially on E. And moreover it has elliptic fixed points on V', we can define firstly a
local system corresponding to E on V' — {elliptic fixed points}, and after that take the direct



image j, to the whole V by the inclusion immersion into V, to get a constructible sheaf F
on V corresponding to E.

We put Py, = {1,---,n} and let ¢ € Map(Pw, {£}) = {£}/>. Then we put H. =
oep.. Hew)-

Lemma 3.1 Assume that I' has a torsion-free (normag) subgroup T of finite index. Then
we have the canonical isomorphism H'(T,E,) = H'(V, E,).

Proof) If T itself is torsion-free, V= I'"\H. is a K(m,1) space, hence Lemma is true. In
general. we can apply the spectral sequences

EY? = gr(0/U, HY(I'",E)) = H*™(T,E), EY'=HP(T/I',HI(V',E)) = H""(V,E
2 2

This settle the proof. One may refer to Grothendieck Tohoku.

We denote by W, the representation space of o and by VVUF the subspace consisting of
invariant vectors under I'" in W,.

3.1.2 A digression to P!(C)

Let (z0,21) be coordinates on C2, and denote by 7 : C? — {0} — P!(C) the standard
projection map to construct the projective line. Let U C P*(C) be an open set and Z : U —
C? — {0} a lifting of U, i.e., a holomorphic map with 7 o Z = id. Consider the differential

form
v_1
w=~—0dlog || Z|?.
27

If Z: U — C? - {0} is another lifting, then Z’ = f - Z with f a non-zero holomorphic
function, so that

J=1 _ V=1 _ _

~5—00og || Z'||* = = —00(log || Z||* + log f +log f)

/o

— w4+ —_1(8c§logf — d0log f)
2

= w

is globally defined differential form on P!(C). It is of type (1,1). With respect to the natural
action of U(2) on P!(C), it is invariant. This means that if w is positive at one point, iff it
is positive everywhere.
Set wy = z1/29 on U = {z9 # 0}, then Z = (1,wy) is a lifting of U. Then
o

T
w = 78810g(1 + wlwl)

Y —].a w1 dw
B 2w 1+ |w1|2
Y -1 |: wlédwl widwy A wldwl}

o [1+|wi2 (14 |[wi]?)?

and at the point [1:0], w = gdwl A dwy > 0.

On the non-compact dual H, i.e., the complex upper half plane, the metric form x = {557
for the SL(2, R)-invariant metric ds? = |dr|?/(Im7)2. It is of type (1,1) and d-closed real
form, i.e., Kéhlerian.



3.1.3 The universal cohomology classes

On P!(C), the Fubini-Study metric defines the associated (1, 1)-type form which is the Kiihler
form as we see in the previous subsubsection. On its non-compact dual H the complex upper

(or lower) half space, we can consider the (1, 1)-type form x = flr;(ﬁd)’; which is invariant under

the action of either SLy(R) or GLg (R.).

Definition 5.1 If (k1, ks, ,kn) #0, i.e., p' is not trivial, we put H:, . (V, E) = {0} for any
i. If (k1,--- ,kn) =0, we set

{0} if i # 2p

Hiitmv(V7E~|) = o
{{@PCPOO,#P:p Crp} @ {Wo}' ifi=2p.

Here for each subset P of Py the (p,p)-type form, given by

N

veEP

1s descent to the quotient V' to define a closed form on V', with each k, is the Kdahler form
on each half complex plane H.(,).

When I' is cocompact (hence not a Hilbert modular group), the above group is found to
be a subspace of H'(V, E), independent of the choice of the cocompact I'. Similar fact is also
true for Hilbert modular case, as discussed later.

3.1.4 Modular forms and cusp forms

There are a few different way to define modular forms on H.. We give the most down-to-earth
(?) definition here, though it is a bit awkward (7).

We firstly have to define automorphy factor. For each v € Py, we have to define another
new parity 7,, holomorphy or anti-holomorphy. To give the parity function n on Py, is
equivalent to define a partition Jy U J_ = Py,. Here

Ji:{UEPOO ‘7]1)::1:}.
Now for a given non-negative integer k, and a parity 7, we define

det(gv)_kv/2(cvzv + dv)kv (771; = +),
det(gv)_k”m(cvzv +d)r (g, = —).

Ip(gos 20) = {

Here g, = (Z” Zv>, and z, € He, .
v v

Here is the definition of the automorphy factor associated with the partition J, U J_ =
Po(F).
Definition 3.2 For k = (ky)vep., € Z>0 we put

WG =ile ) = Tt (gn=)
VEPoo (F)

The automorphic forms with n-holomorphy are defined as follows.



Definition 3.3 We call a function f : H. — C n-holomorphic, if it is holomorphic in z, if
Ny = + and anti-holomorphic in z, if n, = —1. Set
SIEJ*’J’)(F) = {f:H. — C,n-holomorphic function
16) £(1(2)) = 357 (9,2)f (2) for any ¥ €T, (ii) f(2) is 0 at cach cusp }.
Definition 3.4 For k = (k1,--- ,k,) we put
He o (VEp) := (Ip.1-) T oape
@L_UI_:POO(F) Skrs (D)@ {We} ifi=n.

€ess

In particular, we have

{0} ifi#g,
Iy, s
@I+u1_:POO(F) Sé B )(F) ifi=g.

Note here that there are 2™ partitions I+ UI_ = Py of Poo, 2 = (2,---,2), and k + 2 the
addition of integral vectors.

Hiss(V7 C') = {

Theorem 3.1 (Matsushima-Shimura) For £ = E, we have
H'(V,E) = H,,,,(V.E) & H,, (V. E).

unLv ess

Proof) This is now a very special case of the theory of (g, K)-cohomology theory. We may
refer to Borel-Wallach [21]. As we have seen in Lemma (**), since H. is contractible to
a point, we have H'(V,E,) = H' (I, E,). Write G’ = SL(2,R)" and K’ = SO(2)", then
H. 2 G'/K'=SL(2,R)"/SO(2)".
Then, because the space L?(T'\G) or the subspace consisting of C'™ vectors on this space
is regarded as a smooth induction of the I'-module E, we have
HT,E) = H. (G, L*(T\G)x ®c E).

Here L?(I'\G) is the subspace of smooth vectors in L?(T'\G)), and H{ (G, ) is the smooth
cohomology for Lie groups G. One can pass to the (g, K)-cohomology

H'(g, K; L*(T\GQ)so ® E).
via van Est spectral sequence, with g = Lie(G) and K a maximal compact subgroup of G.
Remark 3.1. There is another way to get this isomorphism:
(Iso-1)  HY(V,E) = H(g, K; L>(I'\G)s @ E).
By de Rham theorem we have H*(V,C) = H*(Q*(H.)") with Q*(H.) the de Rham cohomol-
ogy on H.. This was essentially the original approach by Matsushima.
Now we recall a basic result on the spectral decomposition.

Proposition 3.1 (Gelfand, Graev, Piatetski-Shapiro [23]) Let G be the unitary dual
of G, i.e., the set of unitary equivalence classes of irreducible unitary representations of G.
Then as a unitary G-module with its right quasi-reqular action, L?>('\G) have a discrete
decomposition into closed irreducible (unitary) representations m of G

LA(T\G) :@{Homg(HW,L2(F\G))} ® Hy Z@mr(ﬂ')ﬂﬂ (mrp(m) < 00).
el el

Here @ means the Hilbert space direct sum, H, the representation space of m, and mp(m)
the multiplicity of m in L?*(\G), i.e., mp(m) is the dimension of the intertwining space
Homg (H,, L*(T\G)) consisting of bounded linear operators compatible with G-actions.



Remark 3.2 In general L?(I'\G) is written as a direct integral of unitary irreducible repre-
sentations, because G is a group of type I. The continuous spectrum is described in terms of
Eisenstein series which are intertwiners between the continuous spectrum and the principal
series representations of G.

In our situation, it is better to see the contents of the main objects more precisely. We
have G = G’ x Gy and the corresponding Lie algebras give g = g’ @ gg, with compact factor
Gyo. Since Gy is contained in K (K is of the form K’ x Gy with a maximal compact K’ in
G'), we have

H'(g, K; LY (T\G)®E,) = H'(g', K'; L*(p'(D)\G") oo ® E,y ) © H (g0, Go; L (pro(I)\Go) @ Wo).
Note that the right factor in the last tensor product of cohomology group is (W ).
Thus applying Proposition 3.1 above, we have

HY(V, E) = @ {Hom g gy (Hr, L (pr'(D\G")) @ H' (¢, K's Hr © Ey)} ® (Wo)".
reG’

Note here that the topological sum @ is now replaced by the algebraic sum € (this is a
lemma by A. Borel, proved by using that H*(V, E) is of finite dimension).

The investigation of H'(g',K'; Hr ® Ey) is a local problem, i.e., it does not depend
on I', and ¢, H; and E, decompose into simple factors. So the problem is reduced to
the case of Lie(SL(2,R)) and its unitary representations. We have to enumerate those
representations of SL(2, R) which contribute to H'(s[(2,R), SO(2); H; ®Sym*). The discrete
series representations Dlch+2 (holomorphic and anti-holomorphic) with the Blattner parameter
k + 2 contribute to H! with cohomology dimension 1. If £ = 0 the trivial representation 1 is
the other representation contributing to H% and H? with cohomology groups C. The global
condition of the irreducibility of I" is utilized to exclude the case when H is a tensor product
of non-zero number of the trivial representations and non-zero numbers of the discrete series
representations.

The intertwining space Hom g, K/)(HW,LQ(F’ \G’)) is identified with the space of cusp

forms Sl(f:él_) if Hy = ®DZ: with 7 is the signature distribution corresponding to the parti-

tion (I4,1-).

The proof presented here works for any semisimple Lie group G and a cocompact discrete
subgroup I', and it is slightly different from the original proof. But the main idea behind is
the same.

3.2 Hilbert modular case (non-cocompact case)

The quotient space V := Vp. = I'\H. is non-compact for congruence subgroups I' C
SL2(Op). One may believe that the mixed structure on the cohomology groups of the open
variety V have non-trivial arithmetic information. But before that we want to grasp the
‘pure’ part.

To get homogeneous Hodge structures, one way is to consider the intersection cohomology
groups TH'(V* Q) of the minimal compactification V* with middle perversity. The other
natural way from the view point of the theory of harmonic integrals is to consider the L2-
cohomology. Note that V' has the canonical Kahler metric induced from that of H.. Then
we can define a subcomplex of the de Rham complex {(A*(V), d)} of V' by

AZ@)(V) = {we A(V) | wand dw are L*}.



Then the cohomology of this complex is the L? cohomology H (2'2) (V,C) and we have canonical
homomorphisms

H{(V,C) — H{y(V,C) — H'(V,C),

(H!: a compact support cohomology). We define a symbol for the image of the second arrow:
H[iz}(V,C) = Im{Hé)(V,C) — HY(V,C)}, and the image of the composition H{(V,C) :=
Im{H.(V,C) — H*(V,C)} is called the interior cohomology group.

A nice fact is ITH*(V*,C) = H*2)(V, C) and the Hodge filtrations are compatible. This
isomorphism is a special case of a more general similar fact valid for arithmetic quotients of
bounded symmetric domains, which was one time called ‘Zucker conjecture’ and later proved
by Saper-Stern and Looijenga in '80’s. Note that And IH*(V*, Q) and H,Z(V7 Q) have pure
rational Hodge structure of weight .

There is a result by Harder to decompose H(V, C) as a direct sum H*(V,C) = H{(V,C)®
H,. (V, C) of the interior cohomology H{(V, C) and Eisenstein cohomology classes HY, (V, C)
(4, 5)).

L?-cohomology groups are firstly investigated by A. Borel extensively and we can recover
much of the ‘old world’ of the cocompact case, if we replace H*(V') by H 52)(1/).

For simplicity we describe the result in the case of constant coefficients. We have a natural
isomorphism: 5 5

Hiyy (V,C) 2 H* (g, K; LAT\G/Z(C))),

with G = GL3 (O @ R) and g = * * #*.

As shown generally by Borel-Casselman [24], there is no contribution from the continuous
spectrum L2 . in the spectral decomposition :

LQ(F\G) = L%lis (F\G) ©® Lgont (F\G)7

where G = G ' Z (G) and L2, (T'\G)) is the sum of closed G-invariant irreducible subspaces
and L%, ,(T'\G) is its orthogonal complement by definition. The continuous part L?,,,(I'\G)
is intertwined by Eisenstein series.

Anyway we have

A general theorem of Langlands tells that L% (I'\G) consists of the cuspidal part and the
residual part of the Eisenstein series :

L?iis (F\é) = L%usp (P\é) D L%‘es (F\é)

Here the submodules B
H*(g,K;L},,(T\G))

Tes
is the universal part H {2)7umv(V, C) of H (*2)(V, C) generated by the invariant Kéahler classes
as in the cocompact case. The other part is

H*(gaK;Lz (F\G)) = H?Q)@ss(‘/v C)

cusp

We can define the automorphy factor and the space of cusp forms similarly as in the cocompact

case. Here we have to replace Py, by Puo(F'), and to define cusp forms we have to impose the

vanishing condition at cusps. We have a theorem analogous to that of Matsushima-Shimura.
Here is the relation between various cohomology groups.

Theorem 3.2 In the case of Hilbert modular varieties, the square-integrable cohomology, and
the interior cohomology are coincide if the degree of the cohomology group is < g. They are
sums of the universal cohomology classes and the cuspidal cohomology classes.



There is a good survey in Chapter III of Freitag’s book [14].
When the coefficients system is trivial, for toroidal compactification f/, we can consider
the canonical map:
HO(V,Q) — HY(V, Q).

In [8], we proved that the image of this natural map is W,H9(V, Q).

3.3 The action of Hecke operators

Let A C T be a subgroup of finite index in I', and let p : VA := A\H, — Vp = I'\H,
be the associated finite morphism of analytic spaces. Then the direct image p,Q defines a
constructible sheaf on Vp. The natural maps Q — p,Q and ¢r : p,Q — Q induces

p* HZ(VI—WQ)_}HZ(VAvQ)v Dx HZ(VA?Q) _>Hi(VF>Q)7
pe: Ho(Vr, Q) — Ho(Va, Q) puc: Ho(Va, Q) — Hi(Vr, Q),

because congruence subgroups I', A we have compatible minimal compactifications to define
cohomology groups with compact supports: H:(Vr, Q) := H*(Vp, Q) (i : Vp C V¢ Simi-
larly, we have canonical extensions to the intermediate extensions 71, Q and #1,p,Q to V* to
get

pr TH' (Ve Q) — TH (VA,Q), pate: IH(VA, Q) — TH'(Vr, Q).

Here p* and p« are mutual Poincaré dual, etc.
If we have A = I' N al'a™! for some element in the commensurator of ', we have two
finite morphisms
Va

P/ q "\
Vr Vora-1 2 V.

Then we have a composition g, o o pg : H@(Vp, Q) — H@(Vp, Q) (Q e {empty, c,!x}).

Applying this for T'(p) or T'(n) operators of Hecke, we have actions of these operators
on Hé(VKﬁn, Q) as endomorphisms of rational mixed Hodge structures. Here VKﬁ” = U1,
considered in the next subsection.

3.4 Hodge structures attached to primitive Hilbert modular forms

To have reasonable action of Hecke operators, we have to replace V1 by a finite disjoint sum
of such Vr:
VKf = GLQ(F)\XOO X GLQ(Afm)/Kfm.

Recall here that Xo, = (C — R)Y. Moreover, here Ay, is the finite adeles of F' and Kg,
is a compact open subgroup of that, corresponding to a ‘congruence subgroup.” Recall the
approximation theorem, to write Vi, as a finite disjoint sum (J, Vr, with Vr, = I':\Hc,.
Then the sum Hss(Vk,,, Q) = B, Hiss(Vr,, Q) of the essential part of the interior cohomol-
ogy group H, ,g (Vr,, Q) of degree g is stable under the action of Hecke operators. The ring of
Hecke operators acts as a commutative subring R in End(HZs (Vi , Q)) and as a semisimple
algebra because of the existence of polarization. Therefore the Q-algebra R is a direct sum
of finite separable extensions K of Q.

By extension of scalars, these fields K are known to be the fields of eigenvalues of Hecke
operators of some Hecke eigenform in SJ(Kp,) = S§I+’I_)(Kﬁn) = P. S§I+’I‘)(Fc) for each
signature distribution € Map( P (F'), o) corresponding to the partition I, UI_ = P (F).

In the case when I' or Kt;, is not full modular case, we have to consider primitive forms.
applying the theory of new forms. etc...

10



Then the new part H| f new (VKﬁ”, Q) is a polarized Hodge structure of weight g, which is a
Hecke submodule of rank 29, and the image R, of the of degree g is a direct sum of finite
separable extension. Let e be a primitive idempotent of Ry, then K, = eRyepe = €+ Ryew
is an algebraic number field and the rational sub-Hodge structure

Hg(Mfa Q) = 6H!£{new(VKﬁn’ Q)

which is a K, module of rank 29. For each embedding ¢ : K. — C, we have an associated
primitive form fé*’l’ corresponding to the partition I, U I_ = P, (F'), such that whose
eigenvalue C'(p) at p is the image o(t(p)). Here t(p) is the image of T'(p) in Ryery — K. We
have o(K.) = Kyo, the field generated by eigenvalues of f, over Q.

3.4.1 The Frobenius at infinity

We refer [8] for this subsection and the next.
In order to define a fundamental system of generators in the Betti cohomology group, one
has to define ‘Frobenius at infinity’ corresponding to the signature distributions on Pu,(F).
Firstly on
Xo = (C—R)P=(F) = 11 H.,
e€Map(P (F),{£1})

an involution F;, is defined by

- if
Fy 7= (rw)uepu(r) € Xoo = 7' = (7]) with 7/, = {T“” per
Tw, if w=w.

Obviously FE = id and this passes through the quotient by any I' C GL2(OF). Therefore we
have induced actions F, of these g involutions on the cohomology group H*(I'\ X, Q). This
defines a finite abelian group F of (2,--- ,2) type of order 29.

For each n € Map(Px(F),{£1}), we can consider the associate character of F and define
n-eigenspace H'(I'\ X0, Q);. On the w-th Kihler class [x], we have F,([ky]) = (—1)%% k)]
with 6, ., the Kronecker delta. Obviously we have the decomposition:

HY (M X, Q) = P HI(T\ X0, Q)
neF

Moreover since the action of Hecke operators are commutative with that of F, we have also
the induced decomposition:

Hg(Mf7 Q) = @ Hg(Mf7 Q)U
neF
with H9(My¢,Q), = HI(Ms, Q) N HY(T'\ X, Q). Then each HI(My,Q), is a Ky module
of rank 1. Here we denote K, by Ky for the idempotent ey corresponding to f.

3.5 The Hodge structures with marking attached to primitive forms

Now we can choose a system of generators {;}, such that each v, € H9(M¢,Q), and

(s Yoy ) = Oy

Here (x, *) is the polarization form on HY(My, Q) and 6y, is the Kronecker delta. We may
consider this a canonical basis of the Betti group H9(My, Q).
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On the other hand, the de Rham realization of H9(M;, Q) ® C = H9(My,C) is the sum

P {S3(Ky) n H(My,C)}.
nEMap(Poo (F'),12)

Here each SJ(My) := SJ(Ky) N H9(M;,C) is a free Ky ® C of rank 1. We can choose a
primitive form f7 corresponding to the embedding ¢ : Ky < C for each fixed n. Then we
have a basis B" = {fd| o € Emb(Ky, C)} of S§(My) for each n. And U, B" is a basis of the
whole H9(My,C).

Choose one o : Ky — C, and consider the corresponding subspace H9(My, Q) ®k ;0 Cin
HI(My,C), which is identified with GaneMap(Poo(F),ug) CfJ. Then via the period map which
connects the de Rham realization and the Betti realization, we have a system of complex
numbers {c,(f¢)} such that fi =37 ¢\ (fd )7(?). Here 4(%) is the canonical image of each
with respect to HY(My,Q) — HI(My, Q) @k, - C.

These 29[K ¢, Q] numbers are the fundamental system of periods with respect to the canon-
ical basis {y} and the choice of basis {B" | n € Map(Puo(F), 12)}. We have the Riemann-
Hodge period relation for them (cf. [8]).

4 Part C: Hilbert modular varieties as moduli spaces

We can give a description of Hilbert modular varieties as moduli spaces of abelian varieties
with maximal real multiplication. This is the analogy to the elliptic modular curves which
are moduli spaces of elliptic curves with adequate level structures.

4.1 The elliptic modular case

Each elliptic curve has the canonical polarization coming from the unit element o. The
three times 30 of the divisor o is very ample and define an immersion [30| : E — P? as a
smooth cubic curve in the projective plane. Choose a non-trivial section = in Og(20) which
determined up to affine transformation axz + b and another section y of Og(30) which is
outside of Of(20), after renormalization of x, y, we have a equation of E:

y2 +a1xy + azy = 3+ a2x2a4m + ag

with a; the defining coefficients of E. Then we can define g2, g3, A of F and the invariant
(i.e., the algebraic modulus) j(F) = 123¢3 /A. Here is the classical result.

Proposition 4.1 Let E; (i = 1, 2) be two elliptic curves over C. Then Ey and E, are
isomorphic, iff j(E1) = j(Es).

Here is an obvious corollary of the above proposition. Let Aut(C/Q) = Aut(C) be the
group of isomorphisms of the field C. Note here that any automorphism ¢ of C induces the
identity map on the prime field Q. For a given elliptic curve, we consider a subgroup

Stabl(E) := {0 € Aut(C) | E 2 E“}.

Then we have j(E) = j(E?) = j(E)? for any o € Stabl(E). This means the fixed subfield
CStabl(E) of Stabl(E) in C contains the field of moduli Q(j(E)), and the converse inclusion
is also easy to prove. Then we have Q(j(E)) = CSPE)  In the case of elliptic curve, we
can say more: there is an elliptic curve Ey defined over Q(j(FE)) with the same j-invariant.
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Generalizing this to polarized abelian varieties (A,C) (for definition, see §§4.2), we can
define the field of moduli as follows. Put

Stabl(A,C) := {o € Aut(C) | (4,C) = (A?,C7%)}.
Then the field of moduli k,,(4,c) is defined as the fixed subfield

km(A7C) — CStabl(A,C)‘

If one can find a set of algebraic invariants Ji(A,C),---,Jn(A,C) such that (A;,C;) =

(AQ’C2) it Ji(Alvcl) = Ji(A27CQ) (1 <1< N)7 then km(A,C) = Q(Jl(A7C)7 T aJN(A7C))
In this field-theoretic approach, which is the style of the classical papers of Shimura, the

construction of J;(A,C) are done by using the Chow form or the Chow coordinates [25] of

ImC|: A — PV (m large enough).

The regular structure of the moduli space is given over C via transcendental construction
of moduli space using the periods or the integral Hodge structures of (A4,C). In this case,
it is the quotient Sp(g,Z)\H, of the Siegel upper half space by the Siegel modular group.
We can show the algebraicity of this kind quotient space by Siegel, or Satake, Bailey-Borel
compactification.

4.2 Divisors and Picard groups on abelian varieties

Any known method of algebraic construction of the moduli spaces uses some kind of ‘pro-
jective geometry.” We have to consider the parametrized varieties as subvarieties in a fixed
projective space. This means that we have to choose a polarization of our abelian varieties.

Definition 4.1 Given an abelian variety A over a field k, a polarization C on A is an algebraic
equivalence class [D] of an ample divisor D on A.

For a given (Weil) divisor D on A, we can associate an invertible sheaf or a line bundle
O4(D). Then two linearly equivalent divisors Dj, D gives isomorphic invertible sheaves.
Conversely, given an invertible sheaf £, then it is trivial over the rational function field of A,
hence there is a divisor D such that L = O4(D). In particular the notion of Weil divisor up
to linear equivalence is equivalent to the notion of Cartier divisor. Thus the Picard group
Pic(A) is defined in two ways:

Pic(A) :={D divisors on A}/ ~

linear equivalence

:= {L invertible sheave on A}/ ~ .
isomorphism

Definition 4.2 Two divisors D1 and Do over A is said to be algebraically equivalent, if there
is a parameter space S with two closed points s1, so on S together with a divisor D C A x S

such that D; = 7 1(s;) (i = 1,2) for w the composition of the inclusion D C A x S and the
second projection pry.

Definition 4.3 Let Pic®(A) be the subgroup of Pic(A) consisting of divisors algebraically equiv-

alent to 0. Then the quotient group NS(A) := Pic(A)/Pic®(A) is called the Neron-Severi group
of A.
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A divisor D on A is called very ample, if the associated linear system defines a closed
immersion

|D|: A — PV,

The same notion is said ample in the old literature. A divisor D is called ample if some
positive multiple mD of D is very ample.

Proposition 4.2 The set
NST(A) :={[D] | D is ample}

1S a cone.

Let (Schemes)/k be the category of schemes over k. For a variable scheme S, we associate
the group
Pic4/(S5) := Pic(A4 x S)/Pic(S).

Then this defines a contravariant functor Pic 4, from (Schemes)/k to the category of abelian
groups (Ab). As shown by Grothendieck and Raynaud, there exists a locally noetherian group
scheme Pic 4/, representing this functor. Let Pic% Jk be the connected component of Pic 4.
Then it is the dual abelian variety A* of A. The quotient group Pic 43, / Pic?4 Ik is canonically
isomorphic to the Neron-Severi group NS(A) taking the k-valued points of Pic 4 /.

If a divisor D or an invertible sheaf L is given on A, we can define a homomorphism
wp:A— A*or o, : A— A* by

x € A(k) — Ta*(D) — D or TL ® L' € Pic’(A) = A*(k)

for geometric points z in A. Since ¢p is additive (i.e., ¢p,+p, = @D, + ¢D,) is the 0-
homomorphism for D € PicO(A), we have a naturally induced homomorphism

NS(A) — Hom(A, A").

Moreover the image of this homomorphism is contained in the fixed part Hom(A, A*)%Y™.

Example When dim(A/C) = 2, we have rankzHom(A, A*)*¥™ < 3. When this is equal to
3, there are infinite many different F' with Op with 6 : Op — End(A).

If the base field k is the complex number field, the notion of algebraic equivalence is
equivalent to the notion of the homological equivalence. i.e., the first Chern classes of two
divisors in H2(A®,Z) coincides. Therefore in this case, we have a canonical homomorphism:

2
c1:NS(A) - H*(A™, Z) = [\ H' (A", Z).
Here A%" is the analytic variety canonically associated with the algebraic variety A/C.

Definition 4.4 A pair (A,C) of an abelian variety A over k and a class C = [D] € NST(A) is
called a polarized abelian variety.

Remark Since C is ample, there is a positive integer m such that |mC| : A — PV is a
immersion. And if two polarizations C, C’ belongs to the same Q_ -ray, i.e., there are positive
integers m, m' such that mC = m/C’, then via Veronese maps the two embedding are related,
i.e., there are relations between the coefficients of the two systems of defining equations of A
in PN or PV'. But if C and €’ does not belongs the same Q L -ray, probably the projective
equations for A are quite different. For a generic abelian variety A, we have NS(A) = Z.
Hence NS*(A) = N consists of unique Q_ -ray.
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Now let us assume that A is defined over C such that A®" is a Op-torus. A given polar-
ization class C = [D] € NST(A) ¢ H2(A™,Z) = N\* H' (A", Z) defines a skew symmetric
bilinear form

Yp  HI(A™,Z) x Hi(A""|Z) - Z

Here L := Hy(A™,Z) is a projective Op-module L = Op @ a~! of rank 2.
Now we impose some condition of symmetry for ¢p. For a € O, we consider the 6(a)-

multiplication 6(a) : A — A. Then for dual abelian variety A* we have a functorially defined
map f(a)* : A* — A*.

Definition 4.5 We say that [D] is Op-linear, if it satisfies the commutativity ¢p o [a] =
[a]* o ¢p, i.e., we have a commutative diagram

A Boa
0(a) | 1 6(a)*
A =2 o4

This condition is equivalent to require that ¢ p is essentially Op-linear or Op-symmetric,

ie.,
Yp(0(a)y1,72) = ¥p(n,0(a)re)

for any v1, 72 € HY(A Z) and a € Op. Or equivalently ¢p : /\% L — Z factors through the
canonical quotient /\% L— /\20F L = a=!. Therefore 1p is specified, if we choose a positive
element 3 € Hom(a™!,Z) = adj.'. Here 0" is the codifferent of F.

Thus for A/C which is O torus, a choice of polarization C = [D] is to choose a ‘positive’
element (3 € ab;l corresponding to an ample divisor.

Remark For a generic A over C with Of action, we have NS(A) ®z Q = F. In this case,
any polarization is automatically symmetric. But it may happen F' C NS(4) ®z Q.
4.3 Weak polarization, or the notion of positivity

In the classical literature, the usual notion of polarization was to choose a Q_-ray in the
ample cone NST(A4). The notion of weak polarization is a variant of this. We want to
consider O;S—ray.

Definition 4.6 Let p: A — S be an abelian scheme over a base scheme S with ring homo-
morphism 0 : Op — Endg(A). Then we say that A/S has Op-multiplication, if the sheaf
Lie(A/S) of the relative Lie algebra along the zero section e : S — A is a O @z Og-module
of rank 1.

For simplicity, assume that the base S = Spec(k) of a field k. Then the Neron-Severi
group NS(A) is identified with the image of the map

D — ¢p € Hom(A, A").

Let NS(A)o, be the submodule of NS(A) consisting of Op-linear classes. Then for a given
class [D] € NS(A)o,, we can define an action of a € O by .0 = ¢p - 0(a).

Definition 4.7 (Shimura, '63) Let E; be the group of totally positive units in F'. Then set

{4y ¢ mp

+
¢eE}

is called “weak polarization”, if [D] is ample.
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To justify this, one has to confirm that £[D] is also ample if [D] is ample and & € E.
This is almost obvious for k¥ = C from the transcendental description of [D] as a Riemann
form.

Rapoport [10] call the equivalent notion as “positivity”, which he attributes Deligne.

Now we want to define moduli functors to give ‘Hilbert modular varieties.” But before
that be have to confirm one point.

Proposition 4.3 Let p : A — S be an abelian scheme with real multiplication 6 over S.
Then the etale sheaf P, which associate to an etale cover T' — S the set

Homy o, (A, A*)*¥™ :={X: Xp — X7 | XA : Op-linear and symmetric},

1s locally constant with values in a projective Op module of rank 1 equipped with the notion
of ‘positivity’ corresponding to polarizations of (X,p).

Definition 4.8 We denote by Fqq. , a functor on S € (Schemes/Z) given by

at s

(i) : p: A— S, an abelian scheme with real multiplication
0:O0r — Ends(A),

(i1) rigidification on polarization data: (P,P+) =2, (a1, a;l),

over S.

Theorem 4.1 (Rapoport [10], Theorem 1.20) The functor Fy
algebraic stack SFa,a+ smooth over Z.

a,. 18 representable by an

Proof) The first step of the proof is to show the existence of the formal moduli space, i.e., to
develop the local deformation theory for the moduli functor. Among others, the point is to
show there are no obstructions of the deformation, which implies the formal etaleness and/or
formal smoothness of the moduli problem in question.

Then 2-nd is to show algebraization of the formal moduli spaces, employing the approxi-
mation theory of M. Artin [1, 2, 3]. O

By the above theorem, we have models of Hilbert modular varieties defined over the
rational number field Q by taking the associated coarse moduli space. But note here that
the purpose of the paper [10] was to have toroidal compactifications such varieties.

We omit the discussion of the l-adic local systems and the automorphic line bundles over
these moduli stacks. Some parts are just a formal analogue of the elliptic modular case.

The chapters IX and X of van der Geer [17] are regarded as very nice reviews before
reading the original papers.

5 D: A problem

Here T want to suggest a problem. Let the base field F = Q(v/D) (D > 0) be real quadratic,
hence g = 2.

When the class number hfﬁmt of the narrow sense of F'is 1, i.e., the class number F'is 1 and
F has a unit with norm —1, the variety GL2(OFp)\ X is connected and naturally isomorphic
to SLo(Op)\H, 4+ = GL$ (Or)\H; 4, and F, (i = 1,2) are involutive automorphisms on
it.

However when the class number of F' is 1, but the norm of all units of F' is 1, the class
number in the narrow sense is 2. In this case, by Class Field Theory there is a quadratic
extension K/F unramified at all the finite places, but ramified only at 0oy, 009, i.e., K is
totally imaginary.
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Then the variety GL2(Op)\ X has 2 connected components:
Sit:=GLy (Or)\Hy 4, and S, := GL; (OF)\H .

Since either of Fi,, induces a diffeomorphism between S, 4 and S, _, these are homeomorphic
complex analytic surfaces, but have different complex structure because the signature defects
are different (Hirzebruch [16]). Probably, the surface S4_ has more holomorphic cusp forms
than Sy, . Here is a question.

Question What is the difference between Sy and S;_7 These two should be ‘isospectral’,
probably have the same congruence zeta functions at good primes....

Remark When we obtain Sy . as a subvariety of a Siegel modular variety, S _ is often
obtained as a surface in the level 1 Siegel modular variety (cf. the classical examples by
George Humbert). For S , we sometimes have to start from a para-modular varieties.
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H'(Vp, E)=H'(g,K; C*(I\G) ® E)
DOHF T, FHLD C®(N\G) ZHATERDOZERM AD\G) TEEHZ 5, HIbEUE
A(N\G) — C=(T\G)

M3 quasi-isomorphism TH 5 Z & 2 HFRFT 5 DITHATH 5, Borel bRWEEHE L T
NS, BoEHY R L. Jens Franke [28] IS &k » TRF & hvrz,

IR IPEE L VBT, FATE R SHEL TRV T, BRG L50IEZHS TR
A L TREICE A TR a0,

5.2 L2-cohomology and Intersection cohomology

Zhid. SOFEMRICKERBIOEMALTHEETH S, EICHRINBEZEAT S, X OFRLG
BeADEUFONS, L7 de Rham BHKIC & o T L2 aRkER Y~ HY,) (Vr, B) 2EA5
L&, A

HEZ)(VI—W E) = Hl(g7K7 L2(F\G) & E) = Hz(gvK»LQ(F\G)dzs ® E)

MRALT B Z & 1d Borel ARL 72, ZHiE. cocompact 22 T & & SR 2 [0 9 2 200
HTHLM, RITVER

H{(Ve, E) — Hiyp(Ve, E) — H'(Vp, E)

T OERAOBME L R ITRETHA D,

. HOINRA SR X A AREE Y — (Intersection cohomology) DIZEAS, Z DA LN S
JEBA L 7. Goresky-Macpherson [27] 1345 M Z RO ZRRMARITH L T, W AT Poincaré RO
EMEZRESEL0 L0 BEEH, S, BTV LSRR OFFESICHIE Y 5 stratification
WAL THA 7 VPR — MSEYNTNS <2 A5 (perversity) ZRIEICL. ZhEffi->T,
RFED perversity 1 & b DOHEERZEFR L. HHAHIZL perversity Z D ARETY —ITH L T
Poincaré BONMEZFE L 7z, H[E @ perversity(middle perversity) %% Poincaré Bou % 5.2 5.
T Deligne 2N OO ARET Y T L HHEHREL HA T OMFRESA—KISTEMILL 7=,
Stephen Zucker 1%, XFREE DFAMTEEG D Satake, Baily-Borel = > /37 ~MbE (Flfld minimal
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compact L& W) Ab WD, THITLTHOAAEDT VRS20 OFRBIMLEL D ?) D&
o, ZoRXarEaY -2, L2 aREQV-PHRAICARTH L Z & 2P 72 (1983 4
), Zhidk, RXaARETY —OAHPRFHE DT 2F]H L T, topological T LEFI#)EHY)
72 J7$1C. Saper-Stern &, HBEEZ ® Hodge modules OEEFG % T Looijeng 2%, ZHZh
MNZITEERA L 7z, iklE E-Math THNXNTTF W, 20 Z A ZE—E D AR TT Z < HAT
L7z T b &, RS RFEED K> T B0, i iisEiE € 0% T KIZR - 7z,

Z DFATORHIIC, WA A Shimura varietie @ Hasse zeta BRI & 2H D I LT 5 A7z
LM 0T, —FHERL THL,

¥ 9. Hasse zeta BAEUE, fHOE SRV E1F zeta B OMERFE TH 5 DT, TTEHREK
WA B8] zeta BIRUE BT 2 035038 5, B 1E Shimura varieties D_LDE Y 2 7 —JER
@ Hecke ZIANTE L Z &I 5, 2k, Shimura varieties @ reduction mod p 23E
BEILTHD LT, aRERY—FL LTI H(V, E) ® etale cohomology fig & BIRH 5.
2 AD,

(1) 2he& TH*(V, E) D&, AT 555 T 2 BEGRNRERE (BUTHAEDEHR
T L, BRD DZRRIR OEERGRI % f*#ﬁ%a%é:b\ BIRT), HIHASDERINRL D
PBATEHR TR I NG BRSNS 5 (2 i*ﬂﬁ&)’tj(’ﬁ)]‘(&%b EETH 5).

WD RIEE &

(2) & zeta B % Hecke ZIAN & L THETE TY, Z OMRF % KIHY72 Hasse & L
THRRD D, Tt ORFETH 5,

WD NS B,

iz &% 5 T &I1Z Shimura varieties @ Hasse zeta A DE 5 AL, ARl 3¢
[Z OWFFEE. FERFFEICRNZD ). & THERBERICRNLD ] e E D Al e GEAAS® 5,

B, L-akEnY—-osofid. e LERTH S LA S, Borel DFRICIE
720720 Kuga @ Lemma 25,

G: moduli ZEDERDLH

CHITERIC L > TEEBL T b, Gauss WEMEY 29— Z2E X Cniznld, $H T
MENTWD, FMEY 27 —BZ, FEMBEELS THIZET 5. &) Did Klein DIEESH
LWy, A, Hurwitzs MEINTEZD L IITENTWz 2 B S, Fricke-Klein KW Z DR TH
AIM? FLZ A Kiepert EF D AM, *aﬁﬂéﬁm%%ﬁ%ﬁéﬁ o T, FFHEY 2T —BH
ZFNRTWE, ZDAIE Math. Annalen IZ72 AL EEHE TN S,

20 fHCRTE/Z &, Albert @ Abel ZAkMRD B CHEFRITYER OWFSE & A (PR DFRICIE Riemann
1751 &2, Riemann FER LW TT IR, DFE D, 7—N)VZRHRITIEHENIC L 2R E R
72N) Lefschetz DY A 7 )VOZEL h>, Hodge DMFZEL A3, BRDE Y 2 T A 2 OMFZEICR
Iz T b, REEIRR DS E7Z L. Teichmiiller DWZEE PO H S, EboNeEH &, R
M2 FHE TRESRIER DN Nz, KK TH DAY, Teichmiiller 2% Nazi ® SS THo7z &
N, TZoMEH2 2V RDOADNBZEL Y [New York 2K (Ahlfors %> Lipman Bers @72 & D
CEeEREICRD)MIBEI DL BROBERATHS] LI, New York DNy & Uk
THWe, - ABEZEDFEETH D,

% 20 AL DRI B & REASARIR ORI 20 SEREEE RS 23 C & T (Chevalley, Weil,
Zariski, Samuel 72 & ?), HEMFIIC. Chow form, Chow coordinates (72 & Samuel D
BlE) 2 &, moduli 24 2R S B ARz, BFED functioriality 1< & % moduli DEF
WA 5. specialization 12 & A HEDEFRR EMNE-> TV BRENTZDITODDOED, K&
LELZ,

1970 4EEE FE T, AV TV F )V D Shimura varieties ORI F I 7z THEDOBEIEILLAT 0@
DTHDH, ZZ TCRIEICR 7203, EfEH 5 HAHERBEREHRE L /2. Wil — )V R
DETH5H, . TNEHEBHE L TEZA T, BBRGET, 2% 0 BUTY] (oFEfEH) T
(BTEZ2 61X Hodge HiEL T2, BV 27 A MR T 5. 5605 Dl A RNFMAEE
D = G/K OB ERHE T ISk Ve =T\D TH5., Zhid, Satake, Bailey-Borel @
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compact {ELDHFH LV, ¥FREUA C J:o)ﬁﬁg?%ﬁi JiRB, RIS, 2D Vp (DBEIE) I
HiEE ANs, Zh% Chow EEZHWTTY., 2 ZTIHHOD CM i (special points) 1T &
% canonical model OFFEATIF . Deligne @ﬁ*ﬁfii strange model (L?f)‘bﬁﬂ&%‘%‘ Shimura
o UTHBICMET S LHFL T Tn5), PELAITZRU canonical model 72 ECITF R L
ey, 22Tl 2ROTHESBD TR TH L Z LITERL TR, 2ok, BT 5
T 5 FRIFERFELFERE G0, HUIC K - UL BEDO 2 R b THELRFERICHET
EHHEMN (HBIETYL)HY £,

Moduli 22 O — R 72 ERGE X, A. Grothendieck @ Hilbert schemes D& AIZ & - T—
#F L7z, e Chow forms IT & Z.) Chow schemes DOBEITEY)Z2 b D% B TF &y, Hilbert
schemes 7*5& moduli 24/ %55 1213, (FR) A2 % V5., David Mumford 1, Geometric
Invaraint Theory IZ3BT, Eﬁﬂ’]tﬁxzt D & ICHEOFALEICE b 2 HARR R HE
(Hilbert schemes O CHHAZERBETHATLE D Z L DML D), stability DORE%E
L<BKRL 7z, #RIC Habousch 2M#EH L 7z, geometrically reductive algebraic groups OFHXT
AERBROARERK L BT, ZOTKIEIBD THENICRA T, T LR, 7%
BRIK D moduli ZZRIICBIL T, BHIR (2 AREOBNRETRALL b D) D LT, moduli
EREEwR LD I B TE, K5 E’Jiﬁiumo) almost all primes DRAEZFVMA 52 LB TE
7z (N7 MIVRDEY 2T A Z2/IC ZZTIEHFEALERW),

L2L, & Z‘U%fﬁ@ﬁ%&%ﬁ&wﬁ&) 5. Hilbert schemes @ HA%, Geometric Invariant
Theory LT stable, & % M3 semistable, TH 2 Z & 2HET 5 Z L1d Gieseker DFERZL L
WHLLDOD, 50L I AMMABALAEIITEE L v, AR L, B0 o4& TlE, Shimura
DFEDR > T, T\D DFLEIHK S Z LRSS, 2 N T ER oIS S higun,

T ZTCRGLIMRM, THF) 22 2F LK stack TH 5, moduli BT b T
IC formal moduli DFEFENT ARV K D78, AALHLT X 7220 obstruction 23%H 5 L 572 DI
TTA BHEDOHER TIIIRA R WD THED A, Formal moduli 237FE 9 1L, moduli 13/FHFTIC
formal ICI3FET 5. BEIZZNEMA TREWZR]. AREZ D Db D& LT, scheme 'C“fot
e, RITMY 5 EEFHFWOEBRT, schemes @ [F] & L THKL LD EEHI DT TH S,

ZNT, LTI R TS 2085 MIEREHILEN S 22wy, 772 Ried 5 g
W efER ] OX AR LT, HE Y EENRICHITENE SITED,

b TEEs) & FO0 L] L Fo 08 2 DA <‘: > T, AIDHARDFIEDOTH]
DEEFITIR > TNBSE DT, PIWINAT—FEDANEFET LIS, HAIEE LA 2<%
TWE—HTHbH, bol b, KYDFAIL HicAY /‘i‘}lf@nmsj(’i’ FEROD, G0kl
o l2IPREN, ThiZe b, oV FITE L, RBOGEENEART, Thill [
Bf2z), DXV ZREKOGEEZ — K, WRSREROKLEATHL Z LI, EEL TR,

MRZEXE L, ZEBHEAIER. EIRITEY 29 — SRR L2 R YSICHFIERE A D &
I HIT, AL THRICZTUTFENTT,
2005 4£ 12 A14%
L Ny N T By S T 2 A
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