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Introduction

This is the enhanced version talk note of the summer school 2005 at Hakui in Ishikawa
Prefecture. I gave two talks, one hour for each. The former is mainly about the cohomology
groups of Hilbert modular varieties, the latter about the interpretation as moduli spaces of
abelian varieties with real multiplication. Hence the contents of talks are of basic level. What
might be the hope and intension of the organizers and the audience, in two hours the possible
thing is very limited.

There are still many problems for Hilbert modular varieties and Hilbert modular forms.
I hope this might be of some help who are interested in this theme.

The author thanks to Kei-ichi Gunji for correction of many typos and some discrepancy
in the preliminary version.

1 Introduction of Hilbert modular varieties

One way to introduce Hilbert modular varieties is to regard them as moduli spaces of abelian
varieties with maximal real multiplication. Namely let F be a totally real number field of
degree g = [F : Q], o an order of F , then we consider the moduli space of abelian varieties A
of dimension g with a ring homomorphism θ : o → End(A). For simplicity as the order o of
F , we consider only the integer ring OF of F .

Let A be defined over the complex number field C, then its tangent space at the identity
V = Lie(A) is canonically an OF ⊗ C-module, which is automatically of rank 1 by the
condition of the dimension of A. If we denote by P∞(F ) the set of equivalence classes of the
infinite places of F , we have the canonical decomposition:

OF ⊗Z C =
⊕

v∈P∞(F )

Cev.

Here ev is the primitive idempotent of OF ⊗ C corresponding to the place v. By definition
we have 1 =

∑
v ev, and we have the associated decomposition of V :

V =
⊕

v∈P∞(F )

Vv (Vv = evV, for each v ∈ P∞(F )).

To have A as a complex torus, we have to specify its lattice L such that A = V/L. Since the
rank of L over Z is 2g, it should be a projective OF -module of rank 2. As known in Algebraic
Number Theory, such L is isomorphic to a direct sum OF ⊕ a−1 with a fractional ideal a−1

in F .
To have a complex tours V/L is equivalent to assure that

(i) there is an injective homomorphism ϕ : L→ V
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(ii) with the quotient V/ϕ(L) being compact.

In this case, we also say that L is a OF -lattice of V .

Definition 1.1 For a fixed L and V We set

X∗ := HomOF
(L, V ) := {ϕ : L→ V | ϕ(L) is a lattice }.

Fix an injection L in F 2 once for all. This is equivalent to fix a marking α : L⊗ZQ ∼= F 2.
We have to define also β : V ∼= OF ⊗Z C. Under these markings, to specify ϕ is equivalent to
specify the pair of elements z = ϕ(e1), w = ϕ(e2) in OF ⊗Z C with e1 = (1, 0), e2 = (0, 1) ∈
F 2. And the condition that ϕ(L) is a lattice is equivalent to

Im(zvw̄v − z̄vwv) 6= 0 for each v ∈ P∞(F ).

Thus we have to consider X̃∗ consisting of a pair of points z, w satisfying the above condition.
We can write X̃∗ as a sum of 2g connected components X∗

ε , such that each of them is
consisting of the pair (z, w) with specified signatures

εv = sign{Im(zvw̄v − z̄vwv)} ∈ {±} for each v ∈ P∞(F ).

Here ε = (εv)v∈P∞(F ) is a vector of signs belonging to µ
P∞(F )
2 with µ2 = {±1}.

To recover the original X∗ from X̃∗, we have to ‘forget’ α, β. To forget β is to consider
the quotient of X̃∗ under the action of the unit group (OF ⊗C)× of OF ⊗C . It is easy to see
that each component X̃∗

ε is stable under this unit group. As an representation of each orbit
under this unit group, we may choose an element of the form (z, 1) in X̃∗. Thus we have a
natural identification:

X̃∗/(OF ⊗C)× ∼= (C−R)g =
⋃

ε

Hε =: X∞

where each Hε is given by

Hε = {z = (zv) | sign(Im(zv)) = ε} ∼= X∗
ε /(OF ⊗C)×.

Next we can forget the marking α i.e., the choice of special basis e1, e2 in F 2 or in OF ⊕ a−1

by taking the quotient with respect to the action of GLOF
(OF ⊕ a). Thus the double coset

space
X∗ ∼= GLOF

(OF ⊕ a)\X̃∗/(OF ⊗C)× = GLOF
(L)\X∞

is the moduli space of complex OF -tori, the space parametrizing the isomorphism classes of
the whole complex OF tori.

In order to pass from complex tori to abelian varieties, we have to choose polarizations on
tori if they exist. There exist many polarizations on each A. We have to specify them. This
problem is discussed later in the section of “Polarization and weak Polarization.” RIGHT???

From now on, we fix a subgroup Γ in GL+
2 (F ) commensurable with GL+

2 (OF ), and form
the associated quotient V = VΓ,ε = Γ\Hε. In the first part of this note, we recall the basic
results on the cohomology groups of this variety.
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2 Part A: Hilbert modular variety VΓ,ε as a complex algebraic
variety

2.1 Singularities inside

The group Γ acts on Hε properly discontinuously. The elements in the center Z(Γ) =
Γ ∩ Z(GL+

2 (OF )) acts on Hε trivially. For a given point z in Hε, the stablizer Γz in Γ is
equal to Γ ∩ G+

R,z. Here GR,z is the stabiliser of z in GR = GL(2, F ⊗Q R) is isomorphic

to a compact abelian group SO(2)g modulo center Z(G+
R) (G+

R =the identity component of
GL+

2 (F ⊗Q R)). Therefore Γz/Z(Γ) is a finite abelian group. Hence the singularities of the
complex analytic space V is at most quotient singularities by finite abelian groups. There are
only finite number of such singularities modulo Γ. The conjugacy classes in Γ represented by
non-central elements in some Γz are called elliptic conjugacy classes.

Remark The elliptic singularities are so mild that even at such point x the local cohomology
group with rational coefficients H∗

{x}(V,Q) := H∗(V, mod V −{x},Q) satisfies the axiom of
Poincaré, hence we have Poincare duality theorem with rational coefficients. As such V is
said to be rationally smooth.

You can find detailed descriptions of examples for this kind of singularities in the cases
of surfaces, if you consult with the books of Hirzebruch [16] or van der Geer [17].

2.2 Algebraicity

Theorem 2.1 The quotient V is a quasi-projective variety over C.

Proof. The first essential result is due to Siegel, who showed that the field of meromorphic
functions on V has transcendental degree g over C. This implies that V is an algebraic variety.
Afterward, the compactification of such varieties are considered (i.e., Baily-Borel, Satake
compactification, which is now refered as the minimal compactification sometimes). These
compactification are mapped to a projective space, by linear system spanned automorphic
forms including Eisenstein series. The image in the projective space has finite number of
singularities corresponding to cusps.

Remark Now Siegel’s result is an immediate consequence of the dimension formula of modular
forms.

2.3 Cusps and the minimal compactification

The space Hε has the rational boundary component P 1(F ) = F ∪ {∞} with respect to
GL2(F ), which is the homogeneous space. The set of cusps is the double coset space
Γ\P 1(F ) = Γ\GL2(F )/BF , which is a finite set by Reduction Theory of linear algebraic
groups over number fields (cf. [Borel], [Platonov]).

The minimal compactification V ∗ of V is the union V ∪ Γ\P 1(F ) as a set. We have to
define a natural topology and the natural structure of normal analytic space around these
newly attached finite number of points. Each cusp c is mapped to the cusp ∞ by an element
δ in SL(2, F ). Therefore, replacing SL(2, OF ) by its transform Γ′ := δ−1SL(2, OF )δ, we may
regard the cusp is ∞. Then its stabilizer of ∞ in SL(2, OF ), the Borel subgroup BF and the
unipotent radical NF are given by

BF :=

{(
ε m
0 ε−1

)
| m ∈ F, ε ∈ F×

}
, NF :=

{(
1 m
0 1

)
| m ∈ F

}
,
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The intersections Γ′ ∩NF and Γ′ ∩BF are of the form:

{(
1 m
0 1

)
| m ∈Mc

}
,

{(
ε m
0 ε−1

)
| m ∈Mc, ε ∈ Vc

}

respectively, with a fractional ideal Mc in F and a subgroup Vc of finite index in the unit
group O×

F of OF .
The space V ∗ is a compact complex analytic variety with cusps singularities along cusps.

2.4 Toroidal compactifications

The toroidal compactification is the method to attach divisors at infinity to compactify V ∗.
This is defined, depending on the optional data on r.p.p decomposition associated to the
unipotent radical Nc of the parabolic subgroup Pc associated with the cusp c.

Resolution of cusp singularities of Hilbert modular varieties might be the easiest examples
of toroidal compactifications.

In the case of surfaces (g = 2), there is a detailed description of resolution obtained by
continued fractions.

See the paper of Ehlers [15] for general n.

3 Part B: Cohomology groups of Hilbert modular varieties

We review the basic results on the cohomology groups H ∗(V,C) for V = VΓ,ε. In the elliptic
modular case, there is the isomorphism of Eichler-Shimura. For higher dimensional case, this
was generalized by Yozo Matsushima for cocompact case. A. Borel had been the leading
person to extend this kind results to non-cocompact case.

In the Hilbert modular case, it suffices to review some old result of Matsushima-Shimura
[6], and for non-cocompact case the result of Harder and the speaker of this talk.

3.1 Matsushima-Shimura isomorphism (cocompact case)

The cohomology groups consists of two parts: one is the universal part “not depending on
Γ” and the “essential” part described in terms of Hilbert modular forms. Before discussing
the Hilbert modular case where Γ has cusps, hence V is non-compact, we firstly consider the
case when Γ is a cocompact discrete subgroup of G = SL(2,R)n ×G0 (G0 a compact group,
normally a product of SU(2)’s). We assume that Γ is irreducible throughout in this section,
i.e., the projection. to any factor SL(2,R)m (m < n) of G has dense image.

3.1.1 The finite dimensional representations of G and the associated sheaf

Any complex irreducible representation ρ of G with finite dimension is of the form ρ = ρ ′⊗σ,
with ρ′ a finite dimensional irreducible representation of SL(2,R)n, and σ an irreducible
continuous representation of the compact group G0. Moreover ρ′ ∼= ⊗n

i=1Symki with each
Symki the symmetric tensor representation of degree ki

Symki : SL2(R) → GLki+1(C).

We denote the pull-back of this representation to the subgroup Γ by E = Eρ. When Γ
is torsion-free, it is a representation of the fundamental group π1(V, ∗) ∼= Γ of E, hence
corresponds to a local system Ẽ = Ẽρ. When Γ has torsion elements, we firstly assume that
−12 acts trivially on E. And moreover it has elliptic fixed points on V , we can define firstly a
local system corresponding to E on V −{elliptic fixed points}, and after that take the direct
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image j∗ to the whole V by the inclusion immersion into V , to get a constructible sheaf Ẽ
on V corresponding to E.

We put P∞ = {1, · · · , n} and let ε ∈ Map(P∞, {±}) = {±}P∞ . Then we put Hε =∏
v∈P∞

Hε(v).

Lemma 3.1 Assume that Γ has a torsion-free (normal) subgroup Γ′ of finite index. Then
we have the canonical isomorphism H i(Γ, Eρ) ∼= Hi(V, Ẽρ).

Proof) If Γ itself is torsion-free, V = Γ′\Hε is a K(π, 1) space, hence Lemma is true. In
general. we can apply the spectral sequences

Ep,q
2 = Hp(Γ/Γ′,Hq(Γ′, E)) ⇒ Hp+q(Γ, E), Ep,q

2 = Hp(Γ/Γ′,Hq(V ′, E)) ⇒ Hp+q(V, Ẽ)

This settle the proof. One may refer to Grothendieck Tohoku.

We denote by Wσ the representation space of σ and by W Γ
σ the subspace consisting of

invariant vectors under Γ in Wσ.

3.1.2 A digression to P 1(C)

Let (z0, z1) be coordinates on C2, and denote by π : C2 − {0} → P 1(C) the standard
projection map to construct the projective line. Let U ⊂ P 1(C) be an open set and Z : U →
C2 − {0} a lifting of U , i.e., a holomorphic map with π ◦ Z = id. Consider the differential
form

ω =

√
−1

2π
∂∂̄ log ‖Z‖2.

If Z ′ : U → C2 − {0} is another lifting, then Z ′ = f · Z with f a non-zero holomorphic
function, so that

√
−1

2π
∂∂̄ log ‖Z ′‖2 =

√
−1

2π
∂∂̄(log ‖Z‖2 + log f + log f̄)

= ω +

√
−1

2π
(∂∂̄ log f − ∂̄∂ log f̄)

= ω

is globally defined differential form on P 1(C). It is of type (1, 1). With respect to the natural
action of U(2) on P 1(C), it is invariant. This means that if ω is positive at one point, iff it
is positive everywhere.

Set w1 = z1/z0 on U = {z0 6= 0}, then Z = (1, w1) is a lifting of U . Then

ω =

√
−1

2π
∂∂̄ log(1 + w1w̄1)

=

√
−1

2π
∂

(
w1dw̄1

1 + |w1|2
)

=

√
−1

2π

[
w1∂̄dw1

1 + |w1|2
− w̄1dw1 ∧ w1dw̄1

(1 + |w1|2)2
]

and at the point [1 : 0], ω =
√
−1
2π dw1 ∧ dw̄1 > 0.

On the non-compact dualH, i.e., the complex upper half plane, the metric form κ = dτ∧dτ̄
Im τ2

for the SL(2,R)-invariant metric ds2 = |dτ |2/(Im τ)2. It is of type (1, 1) and d-closed real
form, i.e., Kählerian.
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3.1.3 The universal cohomology classes

On P 1(C), the Fubini-Study metric defines the associated (1, 1)-type form which is the Kähler
form as we see in the previous subsubsection. On its non-compact dual H the complex upper
(or lower) half space, we can consider the (1, 1)-type form κ = dτ∧dτ̄

Im(τ)2
which is invariant under

the action of either SL2(R) or GL+
2 (R).

Definition 3.1 If (k1, k2, · · · , kn) 6= 0, i.e., ρ′ is not trivial, we put H i
univ (V,E) = {0} for any

i. If (k1, · · · , kn) = 0, we set

Hi
univ(V, Ẽ) :=

{
{0} if i 6= 2p

{⊕P⊂P∞,#P=p CκP } ⊗ {Wσ}Γ if i = 2p.

Here for each subset P of P∞ the (p, p)-type form, given by

κP =
∧

v∈P

κv

is descent to the quotient V to define a closed form on V , with each κv is the Kähler form
on each half complex plane Hε(v).

When Γ is cocompact (hence not a Hilbert modular group), the above group is found to
be a subspace of H i(V, Ẽ), independent of the choice of the cocompact Γ. Similar fact is also
true for Hilbert modular case, as discussed later.

3.1.4 Modular forms and cusp forms

There are a few different way to define modular forms on Hε. We give the most down-to-earth
(?) definition here, though it is a bit awkward (?).

We firstly have to define automorphy factor. For each v ∈ P∞, we have to define another
new parity ηv, holomorphy or anti-holomorphy. To give the parity function η on P∞ is
equivalent to define a partition J+ ∪ J− = P∞. Here

J± = {v ∈ P∞ |ηv = ± }.

Now for a given non-negative integer kv and a parity ηv we define

jηv

kv
(gv , zv) =

{
det(gv)

−kv/2(cvzv + dv)
kv (ηv = +),

det(gv)
−kv/2(cv z̄v + dv)

kv (ηv = −).

Here gv =

(
av bv
cv dv

)
, and zv ∈ Hεv .

Here is the definition of the automorphy factor associated with the partition J+ ∪ J− =
P∞(F ).

Definition 3.2 For k = (kv)v∈P∞
∈ Z≥0 we put

j
(J+,J−)
k (g, z) = jη

k(g, z) :=
∏

v∈P∞(F )

jηkv
(gv , zv)

The automorphic forms with η-holomorphy are defined as follows.
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Definition 3.3 We call a function f : Hε → C η-holomorphic, if it is holomorphic in zv if
ηv = + and anti-holomorphic in zv if ηv = −1. Set

S
(J+,J−)
k

(Γ) = {f : Hε → C, η-holomorphic function

|(i) f(γ(z)) = j
(J+,J−)
k (g, z)f(z) for any γ ∈ Γ, (ii) f(z) is 0 at each cusp }.

Definition 3.4 For k = (k1, · · · , kn) we put

Hi
ess(V, Ẽρ) :=

{
{0} if i 6= n,⊕

I+∪I−=P∞(F ) S
(I+,I−)
k+2

(Γ) ⊗ {Wσ}Γ if i = n.

In particular, we have

Hi
ess(V,C) =

{
{0} if i 6= g,⊕

I+∪I−=P∞(F ) S
(I+,I−)
2 (Γ) if i = g.

Note here that there are 2n partitions I+ ∪ I− = P∞ of P∞, 2 = (2, · · · , 2), and k + 2 the
addition of integral vectors.

Theorem 3.1 (Matsushima-Shimura) For E = Eρ we have

Hi(V, Ẽ) = H i
univ (V, Ẽ) ⊕H i

ess(V, Ẽ).

Proof) This is now a very special case of the theory of (g,K)-cohomology theory. We may
refer to Borel-Wallach [21]. As we have seen in Lemma (**), since Hε is contractible to
a point, we have H i(V,Eρ) = H i(Γ, Ẽρ). Write G′ ∼= SL(2,R)n and K ′ = SO(2)n, then
Hε

∼= G′/K ′ = SL(2,R)n/SO(2)n.
Then, because the space L2(Γ\G) or the subspace consisting of C∞ vectors on this space

is regarded as a smooth induction of the Γ-module E, we have

Hi(Γ, E) ∼= Hi
∞(G,L2(Γ\G)∞ ⊗C E).

Here L2(Γ\G)∞ is the subspace of smooth vectors in L2(Γ\G)), and H i
∞(G, ∗) is the smooth

cohomology for Lie groups G. One can pass to the (g,K)-cohomology

Hi(g,K;L2(Γ\G)∞ ⊗E).

via van Est spectral sequence, with g = Lie(G) and K a maximal compact subgroup of G.

Remark 3.1. There is another way to get this isomorphism:

(Iso-1) H i(V, Ẽ) ∼= Hi(g,K;L2(Γ\G)∞ ⊗E).

By de Rham theorem we have H i(V,C) ∼= Hi(Ω∗(Hε)
Γ) with Ω∗(Hε) the de Rham cohomol-

ogy on Hε. This was essentially the original approach by Matsushima.

Now we recall a basic result on the spectral decomposition.

Proposition 3.1 (Gelfand, Graev, Piatetski-Shapiro [23]) Let Ĝ be the unitary dual
of G, i.e., the set of unitary equivalence classes of irreducible unitary representations of G.
Then as a unitary G-module with its right quasi-regular action, L2(Γ\G) have a discrete
decomposition into closed irreducible (unitary) representations π of G

L2(Γ\G) =
⊕̂

π∈Ĝ

{HomG(Hπ, L
2(Γ\G))} ⊗Hπ =

⊕̂

π∈Ĝ

mΓ(π)Hπ (mΓ(π) <∞).

Here
⊕̂

means the Hilbert space direct sum, Hπ the representation space of π, and mΓ(π)
the multiplicity of π in L2(Γ\G), i.e., mΓ(π) is the dimension of the intertwining space
HomG(Hπ, L

2(Γ\G)) consisting of bounded linear operators compatible with G-actions.
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Remark 3.2 In general L2(Γ\G) is written as a direct integral of unitary irreducible repre-
sentations, because G is a group of type I. The continuous spectrum is described in terms of
Eisenstein series which are intertwiners between the continuous spectrum and the principal
series representations of G.

In our situation, it is better to see the contents of the main objects more precisely. We
have G = G′ ×G0 and the corresponding Lie algebras give g = g′ ⊕ g0, with compact factor
G0. Since G0 is contained in K (K is of the form K ′ × G0 with a maximal compact K ′ in
G′), we have

Hi(g,K;L2(Γ\G)⊗Eρ) ∼= Hi(g′,K ′;L2(pr′(Γ)\G′)∞⊗Eρ′)⊗H0(g0, G0;L
2(pr0(Γ)\G0)⊗Wσ).

Note that the right factor in the last tensor product of cohomology group is (Wσ)Γ.
Thus applying Proposition 3.1 above, we have

Hi(V, Ẽ) ∼=
⊕

π∈Ĝ′

{Hom(g′,K′)(Hπ, L
2(pr′(Γ)\G′)) ⊗H i(g′,K ′;Hπ ⊗Eρ′)} ⊗ (Wσ)Γ.

Note here that the topological sum
⊕̂

is now replaced by the algebraic sum
⊕

(this is a
lemma by A. Borel, proved by using that H i(V, Ẽ) is of finite dimension).

The investigation of H i(g′,K ′;Hπ ⊗ Eρ′) is a local problem, i.e., it does not depend
on Γ, and g′, Hπ and Eρ′ decompose into simple factors. So the problem is reduced to
the case of Lie(SL(2,R)) and its unitary representations. We have to enumerate those
representations of SL(2,R) which contribute to H i(sl(2,R), SO(2);Hπ⊗Symk). The discrete
series representations D±

k+2 (holomorphic and anti-holomorphic) with the Blattner parameter
k+ 2 contribute to H1 with cohomology dimension 1. If k = 0 the trivial representation 1 is
the other representation contributing to H0 and H2 with cohomology groups C. The global
condition of the irreducibility of Γ is utilized to exclude the case when Hπ is a tensor product
of non-zero number of the trivial representations and non-zero numbers of the discrete series
representations.

The intertwining space Hom(g′,K′)(Hπ, L
2(Γ′\G′)) is identified with the space of cusp

forms S
(I+,I−)
k+2 if Hπ = ⊗Dητ

kτ
with η is the signature distribution corresponding to the parti-

tion (I+, I−).

The proof presented here works for any semisimple Lie group G and a cocompact discrete
subgroup Γ, and it is slightly different from the original proof. But the main idea behind is
the same.

3.2 Hilbert modular case (non-cocompact case)

The quotient space V := VΓ,ε = Γ\Hε is non-compact for congruence subgroups Γ ⊂
SL2(OF ). One may believe that the mixed structure on the cohomology groups of the open
variety V have non-trivial arithmetic information. But before that we want to grasp the
‘pure’ part.

To get homogeneous Hodge structures, one way is to consider the intersection cohomology
groups IH i(V ∗,Q) of the minimal compactification V ∗ with middle perversity. The other
natural way from the view point of the theory of harmonic integrals is to consider the L2-
cohomology. Note that V has the canonical Kähler metric induced from that of Hε. Then
we can define a subcomplex of the de Rham complex {(A∗(V ), d)} of V by

Ai
(2)(V ) := {ω ∈ Ai(V ) | ω and dω are L2}.
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Then the cohomology of this complex is the L2 cohomology H i
(2)(V,C) and we have canonical

homomorphisms
Hi

c(V,C) → H i
(2)(V,C) → H i(V,C),

(Hi
c: a compact support cohomology). We define a symbol for the image of the second arrow:

Hi
[2](V,C) := Im{H i

(2)(V,C) → H i(V,C)}, and the image of the composition H i
! (V,C) :=

Im{H i
c(V,C) → H i(V,C)} is called the interior cohomology group.

A nice fact is IH∗(V ∗,C) ∼= H∗
(2)(V,C) and the Hodge filtrations are compatible. This

isomorphism is a special case of a more general similar fact valid for arithmetic quotients of
bounded symmetric domains, which was one time called ‘Zucker conjecture’ and later proved
by Saper-Stern and Looijenga in ’80’s. Note that And IH ∗(V ∗,Q) and H i

! (V,Q) have pure
rational Hodge structure of weight i.

There is a result by Harder to decompose H i(V,C) as a direct sumH i(V,C) = H i
! (V,C)⊕

Hi
Eis(V,C) of the interior cohomology H i

! (V,C) and Eisenstein cohomology classesH i
Eis(V,C)

([4, 5]).
L2-cohomology groups are firstly investigated by A. Borel extensively and we can recover

much of the ‘old world’ of the cocompact case, if we replace H i(V ) by H i
(2)(V ).

For simplicity we describe the result in the case of constant coefficients. We have a natural
isomorphism:

H∗
(2)(V,C) ∼= H∗(g,K;L2(Γ\G̃/Z(G̃))),

with G̃ = GL+
2 (OF ⊗R) and g = ∗ ∗ ∗∗.

As shown generally by Borel-Casselman [24], there is no contribution from the continuous
spectrum L2

cont in the spectral decomposition :

L2(Γ\Ḡ) = L2
dis(Γ\Ḡ) ⊕ L2

cont(Γ\Ḡ),

where Ḡ = G̃/Z(G̃) and L2
dis(Γ\Ḡ)) is the sum of closed Ḡ-invariant irreducible subspaces

and L2
cont(Γ\Ḡ) is its orthogonal complement by definition. The continuous part L2

cont (Γ\Ḡ)
is intertwined by Eisenstein series.

Anyway we have
H∗

(2)(V,C) ∼= H∗(g,K;L2
dis(Γ\Ḡ)).

A general theorem of Langlands tells that L2
dis(Γ\Ḡ) consists of the cuspidal part and the

residual part of the Eisenstein series :

L2
dis(Γ\Ḡ) = L2

cusp(Γ\Ḡ) ⊕ L2
res(Γ\Ḡ).

Here the submodules
H∗(g,K;L2

res (Γ\Ḡ))

is the universal part H∗
(2),univ

(V,C) of H∗
(2)(V,C) generated by the invariant Kähler classes

as in the cocompact case. The other part is

H∗(g,K;L2
cusp(Γ\Ḡ)) = H∗

(2),ess(V,C).

We can define the automorphy factor and the space of cusp forms similarly as in the cocompact
case. Here we have to replace P∞ by P∞(F ), and to define cusp forms we have to impose the
vanishing condition at cusps. We have a theorem analogous to that of Matsushima-Shimura.

Here is the relation between various cohomology groups.

Theorem 3.2 In the case of Hilbert modular varieties, the square-integrable cohomology, and
the interior cohomology are coincide if the degree of the cohomology group is ≤ g. They are
sums of the universal cohomology classes and the cuspidal cohomology classes.
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There is a good survey in Chapter III of Freitag’s book [14].
When the coefficients system is trivial, for toroidal compactification Ṽ , we can consider

the canonical map:
Hg(Ṽ ,Q) → Hg(V,Q).

In [8], we proved that the image of this natural map is WgH
g(V,Q).

3.3 The action of Hecke operators

Let ∆ ⊂ Γ be a subgroup of finite index in Γ, and let p : V∆ := ∆\Hε → VΓ = Γ\Hε

be the associated finite morphism of analytic spaces. Then the direct image p∗Q defines a
constructible sheaf on VΓ. The natural maps Q ↪→ p∗Q and tr : p∗Q → Q induces

p∗ : Hi(VΓ,Q) → H i(V∆,Q), p∗ : Hi(V∆,Q) → H i(VΓ,Q),
p∗c : Hi

c(VΓ,Q) → H i
c(V∆,Q), p∗,c : Hi

c(V∆,Q) → H i
c(VΓ,Q),

because congruence subgroups Γ, ∆ we have compatible minimal compactifications to define
cohomology groups with compact supports: H i

c(VΓ,Q) := H i(VΓ, i!Q) (i : VΓ ⊂ V ∗
Γ . Simi-

larly, we have canonical extensions to the intermediate extensions i!∗Q and i!∗p∗Q to V ∗ to
get

p∗!∗ : IH i(VΓ,Q) → IH i(V∆,Q), p∗,!∗ : IH i(V∆,Q) → IH i(VΓ,Q).

Here p∗ and pc,∗ are mutual Poincaré dual, etc.
If we have ∆ = Γ ∩ αΓα−1 for some element in the commensurator of Γ, we have two

finite morphisms
V∆

p↙ q ↘
VΓ VαΓα−1

∼= VΓ.

Then we have a composition q∗,♥ ◦ p∗♥ : Hi
♥(VΓ,Q) → H i

♥(VΓ,Q) ( ♥ ∈ {empty, c, !∗}).
Applying this for T (p) or T (n) operators of Hecke, we have actions of these operators

on H i
♥(VKfin

,Q) as endomorphisms of rational mixed Hodge structures. Here VKfin
= ∪cVΓc

considered in the next subsection.

3.4 Hodge structures attached to primitive Hilbert modular forms

To have reasonable action of Hecke operators, we have to replace VΓ by a finite disjoint sum
of such VΓ:

VKf
:= GL2(F )\X∞ ×GL2(Afin)/Kfin.

Recall here that X∞ = (C − R)g. Moreover, here Afin is the finite adeles of F and Kfin

is a compact open subgroup of that, corresponding to a ‘congruence subgroup.’ Recall the
approximation theorem, to write VKfin

as a finite disjoint sum
⋃

c VΓc with VΓc = Γc\Hεc .
Then the sum Hg

ess(VKfin
,Q) =

⊕
cH

g
ess(VΓc ,Q) of the essential part of the interior cohomol-

ogy group Hg
! (VΓc ,Q) of degree g is stable under the action of Hecke operators. The ring of

Hecke operators acts as a commutative subring R in End(H g
ess(VKfin

,Q)) and as a semisimple
algebra because of the existence of polarization. Therefore the Q-algebra R is a direct sum
of finite separable extensions K of Q.

By extension of scalars, these fields K are known to be the fields of eigenvalues of Hecke

operators of some Hecke eigenform in Sη
2 (Kfin ) = S

(I+,I−)
2 (Kfin ) :=

⊕
c S

(I+,I−)
2 (Γc) for each

signature distribution η ∈ Map(P∞(F ), µ2) corresponding to the partition I+ ∪ I− = P∞(F ).
In the case when Γ or Kfin is not full modular case, we have to consider primitive forms.

applying the theory of new forms. etc...
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Then the new part Hg
!,new(VKfin

,Q) is a polarized Hodge structure of weight g, which is a
Hecke submodule of rank 2g, and the image Rnew of the of degree g is a direct sum of finite
separable extension. Let e be a primitive idempotent of Rnew , then Ke = eRnewe = e · Rnew

is an algebraic number field and the rational sub-Hodge structure

Hg(Mf ,Q) := eHg
!,new(VKfin

,Q)

which is a Ke module of rank 2g. For each embedding σ : Ke → C, we have an associated
primitive form f

I+,I−
σ corresponding to the partition I+ ∪ I− = P∞(F ), such that whose

eigenvalue C(p) at p is the image σ(t(p)). Here t(p) is the image of T (p) in Rnew → Ke. We
have σ(Ke) = Kfσ , the field generated by eigenvalues of fσ over Q.

3.4.1 The Frobenius at infinity

We refer [8] for this subsection and the next.
In order to define a fundamental system of generators in the Betti cohomology group, one

has to define ‘Frobenius at infinity’ corresponding to the signature distributions on P∞(F ).
Firstly on

X∞ = (C−R)P∞(F ) =
∐

ε∈Map(P∞(F ),{±1})
Hε,

an involution Fv is defined by

F̃v : τ = (τw)w∈P∞(F ) ∈ X∞ 7→ τ ′ = (τ ′v) with τ ′w =

{
τw, if w 6= v,

τ̄w, if w = v.

Obviously F̃ 2
v = id and this passes through the quotient by any Γ ⊂ GL2(OF ). Therefore we

have induced actions Fv of these g involutions on the cohomology group H i(Γ\X∞,Q). This
defines a finite abelian group F of (2, · · · , 2) type of order 2g.

For each η ∈ Map(P∞(F ), {±1}), we can consider the associate character of F and define
η-eigenspace H i(Γ\X∞,Q)η. On the w-th Kähler class [κ], we have Fv([κw]) = (−1)δv,w [κw]
with δv,w the Kronecker delta. Obviously we have the decomposition:

Hg(Γ\X∞,Q) =
⊕

η∈F̂

Hg(Γ\X∞,Q)η

Moreover since the action of Hecke operators are commutative with that of F , we have also
the induced decomposition:

Hg(Mf ,Q) =
⊕

η∈F̂

Hg(Mf ,Q)η

with Hg(Mf ,Q)η = Hg(Mf ,Q) ∩ Hg(Γ\X∞,Q)η . Then each Hg(Mf ,Q)η is a Kf module
of rank 1. Here we denote Kef

by Kf for the idempotent ef corresponding to f .

3.5 The Hodge structures with marking attached to primitive forms

Now we can choose a system of generators {γη}η such that each γη ∈ Hg(Mf ,Q)η and

〈γη, γη′〉 = δη,η′ .

Here 〈∗, ∗〉 is the polarization form on Hg(Mf ,Q) and δη,η′ is the Kronecker delta. We may
consider this a canonical basis of the Betti group H g(Mf ,Q).
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On the other hand, the de Rham realization of H g(Mf ,Q) ⊗C = Hg(Mf ,C) is the sum

⊕

η∈Map(P∞(F ),µ2)

{Sη
2 (Kf ) ∩Hg(Mf ,C)}.

Here each Sη
2 (Mf ) := Sη

2 (Kf ) ∩ Hg(Mf ,C) is a free Kf ⊗ C of rank 1. We can choose a
primitive form f η

σ corresponding to the embedding σ : Kf ↪→ C for each fixed η. Then we
have a basis Bη = {fη

σ | σ ∈ Emb(Kf ,C)} of Sη
2 (Mf ) for each η. And

⋃
η B

η is a basis of the
whole Hg(Mf ,C).

Choose one σ : Kf ↪→ C, and consider the corresponding subspace H g(Mf ,Q)⊗Kf ,σ C in
Hg(Mf ,C), which is identified with

⊕
η∈Map(P∞(F ),µ2) Cf

η
σ . Then via the period map which

connects the de Rham realization and the Betti realization, we have a system of complex
numbers {cγ(fη

σ )} such that f η
σ =

∑
γ cγ(fη

σ )γ(σ). Here γ(σ) is the canonical image of each γ
with respect to Hg(Mf ,Q) → Hg(Mf ,Q) ⊗Kf ,σ C.

These 2g[Kf ,Q] numbers are the fundamental system of periods with respect to the canon-
ical basis {γ} and the choice of basis {Bη | η ∈ Map(P∞(F ), µ2)}. We have the Riemann-
Hodge period relation for them (cf. [8]).

4 Part C: Hilbert modular varieties as moduli spaces

We can give a description of Hilbert modular varieties as moduli spaces of abelian varieties
with maximal real multiplication. This is the analogy to the elliptic modular curves which
are moduli spaces of elliptic curves with adequate level structures.

4.1 The elliptic modular case

Each elliptic curve has the canonical polarization coming from the unit element o. The
three times 3o of the divisor o is very ample and define an immersion |3o| : E ↪→ P2 as a
smooth cubic curve in the projective plane. Choose a non-trivial section x in OE(2o) which
determined up to affine transformation ax + b and another section y of OE(3o) which is
outside of OE(2o), after renormalization of x, y, we have a equation of E:

y2 + a1xy + a3y = x3 + a2x
2a4x+ a6

with ai the defining coefficients of E. Then we can define g2, g3, ∆ of E and the invariant
(i.e., the algebraic modulus) j(E) = 123g3

2/∆. Here is the classical result.

Proposition 4.1 Let Ei (i = 1, 2) be two elliptic curves over C. Then E1 and E2 are
isomorphic, iff j(E1) = j(E2).

Here is an obvious corollary of the above proposition. Let Aut(C/Q) = Aut(C) be the
group of isomorphisms of the field C. Note here that any automorphism σ of C induces the
identity map on the prime field Q. For a given elliptic curve, we consider a subgroup

Stabl(E) := {σ ∈ Aut(C) | E ∼= Eσ}.

Then we have j(E) = j(Eσ) = j(E)σ for any σ ∈ Stabl(E). This means the fixed subfield
CStabl(E) of Stabl(E) in C contains the field of moduli Q(j(E)), and the converse inclusion
is also easy to prove. Then we have Q(j(E)) = CStabl(E). In the case of elliptic curve, we
can say more: there is an elliptic curve E0 defined over Q(j(E)) with the same j-invariant.
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Generalizing this to polarized abelian varieties (A, C) (for definition, see §§4.2), we can
define the field of moduli as follows. Put

Stabl(A, C) := {σ ∈ Aut(C) | (A, C) ∼= (Aσ, Cσ)}.

Then the field of moduli km(A,C) is defined as the fixed subfield

km(A,C) := CStabl(A,C).

If one can find a set of algebraic invariants J1(A, C), · · · , JN (A, C) such that (A1, C1) ∼=
(A2, C2) iff Ji(A1, C1) = Ji(A2, C2) (1 ≤ i ≤ N), then km(A,C) = Q(J1(A, C), · · · , JN (A, C)).

In this field-theoretic approach, which is the style of the classical papers of Shimura, the
construction of Ji(A, C) are done by using the Chow form or the Chow coordinates [25] of

|mC| : A ↪→ PN (m large enough).

The regular structure of the moduli space is given over C via transcendental construction
of moduli space using the periods or the integral Hodge structures of (A, C). In this case,
it is the quotient Sp(g,Z)\Hg of the Siegel upper half space by the Siegel modular group.
We can show the algebraicity of this kind quotient space by Siegel, or Satake, Bailey-Borel
compactification.

4.2 Divisors and Picard groups on abelian varieties

Any known method of algebraic construction of the moduli spaces uses some kind of ‘pro-
jective geometry.’ We have to consider the parametrized varieties as subvarieties in a fixed
projective space. This means that we have to choose a polarization of our abelian varieties.

Definition 4.1 Given an abelian variety A over a field k, a polarization C on A is an algebraic
equivalence class [D] of an ample divisor D on A.

For a given (Weil) divisor D on A, we can associate an invertible sheaf or a line bundle
OA(D). Then two linearly equivalent divisors D1, D2 gives isomorphic invertible sheaves.
Conversely, given an invertible sheaf L, then it is trivial over the rational function field of A,
hence there is a divisor D such that L ∼= OA(D). In particular the notion of Weil divisor up
to linear equivalence is equivalent to the notion of Cartier divisor. Thus the Picard group
Pic(A) is defined in two ways:

Pic(A) := {D divisors on A}/ ∼
linear equivalence

:= {L invertible sheave on A}/ ∼
isomorphism

.

Definition 4.2 Two divisors D1 and D2 over A is said to be algebraically equivalent, if there
is a parameter space S with two closed points s1, s2 on S together with a divisor D ⊂ A× S
such that Di = π−1(si) (i = 1, 2) for π the composition of the inclusion D ⊂ A × S and the
second projection pr2.

Definition 4.3 Let Pic0(A) be the subgroup of Pic(A) consisting of divisors algebraically equiv-
alent to 0. Then the quotient group NS(A) := Pic(A)/Pic0(A) is called the Neron-Severi group
of A.
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A divisor D on A is called very ample, if the associated linear system defines a closed
immersion

|D| : A ↪→ PN .

The same notion is said ample in the old literature. A divisor D is called ample if some
positive multiple mD of D is very ample.

Proposition 4.2 The set

NS+(A) := {[D] | D is ample}

is a cone.

Let (Schemes)/k be the category of schemes over k. For a variable scheme S, we associate
the group

PicA/k(S) := Pic(A× S)/Pic(S).

Then this defines a contravariant functor PicA/k from (Schemes)/k to the category of abelian
groups (Ab). As shown by Grothendieck and Raynaud, there exists a locally noetherian group
scheme PicA/k representing this functor. Let Pic0

A/k be the connected component of PicA/k.

Then it is the dual abelian variety A∗ of A. The quotient group PicA/k/Pic0
A/k is canonically

isomorphic to the Neron-Severi group NS(A) taking the k-valued points of PicA/k.
If a divisor D or an invertible sheaf L is given on A, we can define a homomorphism

ϕD : A→ A∗ or ϕL : A→ A∗ by

x ∈ A(k̄) 7→ Tx∗(D) −D or T ∗
xL⊗ L−1 ∈ Pic0(A) = A∗(k̄)

for geometric points x in A. Since ϕD is additive (i.e., ϕD1+D2
= ϕD1

+ ϕD2
) is the 0-

homomorphism for D ∈ Pic0(A), we have a naturally induced homomorphism

NS(A) → Hom(A,A∗).

Moreover the image of this homomorphism is contained in the fixed part Hom(A,A∗)sym .

Example When dim(A/C) = 2, we have rankZHom(A,A∗)sym ≤ 3. When this is equal to
3, there are infinite many different F with OF with θ : OF → End(A).

If the base field k is the complex number field, the notion of algebraic equivalence is
equivalent to the notion of the homological equivalence. i.e., the first Chern classes of two
divisors in H2(Aan ,Z) coincides. Therefore in this case, we have a canonical homomorphism:

c1 : NS(A) → H2(Aan ,Z) =

2∧
H1(Aan ,Z).

Here Aan is the analytic variety canonically associated with the algebraic variety A/C.

Definition 4.4 A pair (A, C) of an abelian variety A over k and a class C = [D] ∈ NS+(A) is
called a polarized abelian variety.

Remark Since C is ample, there is a positive integer m such that |mC| : A ↪→ PN is a
immersion. And if two polarizations C, C ′ belongs to the same Q+-ray, i.e., there are positive
integers m, m′ such that mC = m′C′, then via Veronese maps the two embedding are related,
i.e., there are relations between the coefficients of the two systems of defining equations of A
in PN or PN ′

. But if C and C ′ does not belongs the same Q+-ray, probably the projective
equations for A are quite different. For a generic abelian variety A, we have NS(A) ∼= Z.
Hence NS+(A) ∼= N consists of unique Q+-ray.
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Now let us assume that A is defined over C such that Aan is a OF -torus. A given polar-
ization class C = [D] ∈ NS+(A) ⊂ H2(Aan ,Z) ∼=

∧2H1(Aan ,Z) defines a skew symmetric
bilinear form

ψD : H1(A
an ,Z) ×H1(A

an ,Z) → Z

Here L := H1(A
an ,Z) is a projective OF -module L ∼= OF ⊕ a−1 of rank 2.

Now we impose some condition of symmetry for ψD. For a ∈ OF , we consider the θ(a)-
multiplication θ(a) : A→ A. Then for dual abelian variety A∗ we have a functorially defined
map θ(a)∗ : A∗ → A∗.

Definition 4.5 We say that [D] is OF -linear, if it satisfies the commutativity ϕD ◦ [a] =
[a]∗ ◦ ϕD, i.e., we have a commutative diagram

A
ϕD→ A∗

θ(a) ↓ ↓ θ(a)∗
A

ϕD→ A∗

This condition is equivalent to require that ψD is essentially OF -linear or OF -symmetric,
i.e.,

ψD(θ(a)γ1, γ2) = ψD(γ1, θ(a)γ2)

for any γ1, γ2 ∈ H1(Aan ,Z) and a ∈ OF . Or equivalently ψD :
∧2

Z L→ Z factors through the
canonical quotient

∧2
Z L → ∧2

OF
L ∼= a−1. Therefore ψD is specified, if we choose a positive

element β ∈ Hom(a−1,Z) ∼= ad−1
F . Here d−1

F is the codifferent of F .
Thus for A/C which is OF torus, a choice of polarization C = [D] is to choose a ‘positive’

element β ∈ ad−1
F corresponding to an ample divisor.

Remark For a generic A over C with OF action, we have NS(A) ⊗Z Q ∼= F . In this case,
any polarization is automatically symmetric. But it may happen F ( NS(A) ⊗Z Q.

4.3 Weak polarization, or the notion of positivity

In the classical literature, the usual notion of polarization was to choose a Q+-ray in the
ample cone NS+(A). The notion of weak polarization is a variant of this. We want to
consider O+

F -ray.

Definition 4.6 Let p : A → S be an abelian scheme over a base scheme S with ring homo-
morphism θ : OF → EndS(A). Then we say that A/S has OF -multiplication, if the sheaf
Lie(A/S) of the relative Lie algebra along the zero section e : S → A is a OF ⊗Z OS-module
of rank 1.

For simplicity, assume that the base S = Spec(k) of a field k. Then the Neron-Severi
group NS(A) is identified with the image of the map

D 7→ ϕD ∈ Hom(A,A∗).

Let NS(A)OF
be the submodule of NS(A) consisting of OF -linear classes. Then for a given

class [D] ∈ NS(A)OF
, we can define an action of a ∈ OF by ϕa·D = ϕD · θ(a).

Definition 4.7 (Shimura, ’63) Let E+
F be the group of totally positive units in F . Then set

{
⋃

ξ∈E+

F

ξ · [D]}

is called “weak polarization”, if [D] is ample.
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To justify this, one has to confirm that ξ[D] is also ample if [D] is ample and ξ ∈ E+
F .

This is almost obvious for k = C from the transcendental description of [D] as a Riemann
form.

Rapoport [10] call the equivalent notion as “positivity”, which he attributes Deligne.
Now we want to define moduli functors to give ‘Hilbert modular varieties.’ But before

that be have to confirm one point.

Proposition 4.3 Let p : A → S be an abelian scheme with real multiplication θ over S.
Then the etale sheaf P, which associate to an etale cover T → S the set

HomT, OF
(A,A∗)sym := {λ : XT → X∗

T | λ : OF -linear and symmetric},

is locally constant with values in a projective OF module of rank 1 equipped with the notion
of ‘positivity’ corresponding to polarizations of (X, p).

Definition 4.8 We denote by Fa,a+
, a functor on S ∈ (Schemes/Z) given by

(i) : p : A→ S, an abelian scheme with real multiplication
θ : OF → EndS(A),

(ii) rigidification on polarization data: (P,P+) ∼=α (a−1, a−1
+ ),

over S.

Theorem 4.1 (Rapoport [10], Theorem 1.20) The functor Fa,a+
is representable by an

algebraic stack SFa,a+
smooth over Z.

Proof) The first step of the proof is to show the existence of the formal moduli space, i.e., to
develop the local deformation theory for the moduli functor. Among others, the point is to
show there are no obstructions of the deformation, which implies the formal etaleness and/or
formal smoothness of the moduli problem in question.

Then 2-nd is to show algebraization of the formal moduli spaces, employing the approxi-
mation theory of M. Artin [1, 2, 3]. 2

By the above theorem, we have models of Hilbert modular varieties defined over the
rational number field Q by taking the associated coarse moduli space. But note here that
the purpose of the paper [10] was to have toroidal compactifications such varieties.

We omit the discussion of the l-adic local systems and the automorphic line bundles over
these moduli stacks. Some parts are just a formal analogue of the elliptic modular case.

The chapters IX and X of van der Geer [17] are regarded as very nice reviews before
reading the original papers.

5 D: A problem

Here I want to suggest a problem. Let the base field F = Q(
√
D) (D > 0) be real quadratic,

hence g = 2.
When the class number hstrict

F of the narrow sense of F is 1, i.e., the class number F is 1 and
F has a unit with norm −1, the variety GL2(OF )\X∞ is connected and naturally isomorphic
to SL2(OF )\H+,+ = GL+

2 (OF )\H+,+, and F∞i
(i = 1, 2) are involutive automorphisms on

it.
However when the class number of F is 1, but the norm of all units of F is 1, the class

number in the narrow sense is 2. In this case, by Class Field Theory there is a quadratic
extension K/F unramified at all the finite places, but ramified only at ∞1,∞2, i.e., K is
totally imaginary.
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Then the variety GL2(OF )\X∞ has 2 connected components:

S++ := GL+
2 (OF )\H+,+, and S+− := GL+

2 (OF )\H+,−.

Since either of F∞i
induces a diffeomorphism between S++ and S+−, these are homeomorphic

complex analytic surfaces, but have different complex structure because the signature defects
are different (Hirzebruch [16]). Probably, the surface S+− has more holomorphic cusp forms
than S++. Here is a question.

Question What is the difference between S++ and S+−? These two should be ‘isospectral’,
probably have the same congruence zeta functions at good primes....

Remark When we obtain S+,∗ as a subvariety of a Siegel modular variety, S+,− is often
obtained as a surface in the level 1 Siegel modular variety (cf. the classical examples by
George Humbert). For S++ , we sometimes have to start from a para-modular varieties.
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Mathématique, 1973.

[17] Van der Geer, Gerard: Hilbert modular surfaces, 1988, Springer

General background, not limited to “Hilbert modular case”

18



[18] Borel, A. : Introduction aux groupes arithmetiques, Hermann, Paris, 1969.

This is good to know about “Reduction Theory”, finiteness of cusps, Siegel sets, etc.

[19] Platonov, Vladimir and Rapinchuk : Algebraic Groups and Number Theory. 1991 Aca-
demic Press.

Added to “reduction theory”, this contains the generalities on the foundation of (higher)
arithemtic of algebraic groups like, approximation theorem, strong approximation theo-
rem etc.

[20] Borel, A. : Automorphic Forms on SL2(R). Cambridge University Press, 1997

Among others, the good parts are “Eisenstein series (Chap.III)” and “spectral decompo-
sition (Chap.IV).”

[21] Borel, A. and Wallach, N. : Continuous Cohomology, Discrete Subgroups, and Repre-
sentaions of Reductive Groups, 2nd.ed. Amer. Math. Soc. 2000

Cohomology of discrete groups general, relative Lie algebra cohomology, Matsushima
isomorphism, vanishing theorems, etc.

[22] D. Mumford, J. Fogarty, and F. Kirwan : Geometric Invariant Theory, The 3-rd ed.
1994 �

A classical and famous book on the construction of the moduli spaces of Abelian varieties
and algebraic curves, as quotient spaces. But the problem of stability is discussed in
another monograph of Mumford..

[23] I.M. Gelfand, M.I. Graev, and I.I. Pyatetskii-Shapiro : Representation Theory and Au-
tomorphic Functions, W.B. Saunders Co. 1969

[24] Borel, A. and Casselman, W. : L2-cohomology of locally symmetric manifolds of finite
volume. Duke Math. J. 50 (1983), 625-647.
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����
 � t Þ%ß � È �-� Ã p¬î��%·����\�¬Ê z*Ô ª w�p������ Ì ��ý�þ�ÿ �	��� ¾5� stratification� ²¬vVw�� ¦���� ����� Ò £�y��� ��! �C�¹~R�#"�$ (perversity)

t	�%· � vnz ­ �5t#% � w7z&�' �
perversity 1

t�(���) Ë�Ì t 
�* vTz�+�,q}#~ perversity
t�(�� Í?Î#ÏqÐ�Ñ�Ò �	� v�w

Poincaré 
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