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(Quasi-)Elliptic surfaces

k = �k : algebraically closed fields in characteristic p > 0

f : X // C : an elliptic surface over k
I X (resp. C) is a nonsingular projective surface (resp.

curve) over k
I f is a surjective morphism whose general fiber is a

nonsingular elliptic curve and fibers have no (�1) cueve
(relatively minimal)

I f has a section O

f : X // C : a quasi-elliptic surface over k
I X (resp. C) is a nonsingular projective surface (resp.

curve) over k
I f is a surjective morphism whose general fiber is a rational

curve with a cusp
I f is relatively minimal and has a section O



Fundamental facts
Let f : X // C be a (quasi-)elliptic surface

I Mordell-Weil group : MW(X=C) := fsection of fg
I Mordell-Weil theorem (Lang-Néron 1959, I. 1992)

MW(X=C) is a finitely generated abelian group,
i.e., MW(X=C) �= Z�r � torsion subgroup
For the case of unirational quasi-elliptic surfaces, r = 0 and
torsion subgroup is p-elementary abelian group (I. 1992,
1994)

I NS(X ) : Néron-Severi group of X (group of divisors on X
up to algebraically equivalence)

I Relation between Mordell-Weil gruop MW(X=C) and
Néron-Severi group (Shioda 1972, I. 1992) :

MW(X=C) �= NS(X )=T

where T consists of O-sections, a general fiber, vertical
divisors which donot intersect with O-section



Mordell-Weil lattices(Shioda 1990)

There exists unique group homomorphism

' : MW(X=C) // T? 
Q � NS(X )
Q

such that
1. for any P 2 MW(X=C), '(P) � (P) mod TQ;

2. Ker' = MW(X=C)tor ;

then define a pairing hP;Qi for P;Q 2 MW(X=C) by

hP;Qi := �('(P); '(Q)):

Then (MW(X=C)=(tor); h ; i) is a positive definite lattice and we
call it Mordell-Weil lattices (MWL) of X=C.



Mordell-Weil lattices (Shioda 1990)

The MWL (MW(X=C)=(tor); h ; i) has a sublattice
(MW(X=C)�; h ; i) which has a good properties such as even,
integral and positive-definite.

I MWL for rational elliptic surface X=P1

MW(X=P1)=(tor) �= (T?)� � hO;F i? �= E8

[ [

MW(X=P1)� �= (T?)

=) “Everything happens inside E8 rational for elliptic surfaces”



Main subject

Motivation : When an object is related to � � � of order p, � � � of
degree p, Frobenius morphism, � � � , many interesting things
happens in characteristic p > 0.

Want to study
elliptic K 3 surfaces with pn-torsion sections in characteristic p > 0.

I Want to classify them if possible.
I Want to study the geometry of their moduli.

Conclusion : Get the classification and interesting geometry.

P-torsion sections behave like irreducible divisors of the
fibration. That is, the existence of p-torsion reduces the
dimension of moduli.

Joint work with Christian Liedtke
“Elliptic K 3 surface with pn-torsion sections” (arXiv:1003.0144)



Related works on p-torsion sections

I (Levin ’68) The order of torsion subgroup of non-constant
elliptic cueve over a function field can be bouded by p and
the genus of C.

I (Nguen-Saito ’96, Hindry-Silberman ’88, Goldfeld-Szpiro
’95) the bound for prime-to-p part in terms of p and the
gonality of k(C)

I (A. Schweizer ’04) Case non-constant elliptic surface
I the restriction on the genus of C, gonality of k(C) and

p-rank when pn > 11,
I the explicit examples including K 3’s when pn � 11.

I (Dolgachev-Keum ’01) Using the theory of symplectic
automorphism action on K 3 in positve characteristic,

I the order of symplectic auto. is prime to p when p > 11
I the examples of K 3’s which have symplectic auto. whose

order is divisible by p when p � 11
I (Dolgache-Keum ’09) If an elliptic K 3 sufface has p-torsion

section, then p � 7.



Main Theorem 1
Elliptic K3 surfaces with pn-torsion section in characteristic p
exist for pn � 8 only.
If the fibration has constant j-invariant then pn = 2.



Main Theorem 1
Elliptic K3 surfaces with pn-torsion section in characteristic p
exist for pn � 8 only.
If the fibration has constant j-invariant then pn = 2.
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Igusa moduli functor
Igusa moduli functor

[Ig(pn)ord] : (Sch=Fp) // (Sets)

associates to every scheme S over Fp the pair of ordinary
elliptic curve E over S and pn-torsion section on the n-fold
Frobenius pullback (F n)�(E).

Theorem [Igusa ’68]:
1. When pn � 3 then [Ig(pn)ord] is representable by a smooth

affine curve (=: Ig(pn)ord), and we have the universal family
E // Ig(pn)ord.

2. The geometry of the normal compactification Ig(pn)ord of
Ig(pn)ord was studied.



The geometry of Ig(pn)ord
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E.g., n = 1 and p � 3
I j : Ig(pn)ord // P1 is Galois covering with Z=p�1

2 Z
I j is totally ramified over the supersingular j-values and

totally split over j =1,
i.e., there are (p � 1)=2 points (cusps) lying above 1

The degenerating behavior of the universal family �E over the
supersingular points and the cusps has been determined.
(Liedtke-Schroeer ’08)



Example : Ig(11)ord

I Ig(11)ord �= P1

I Ig(11)ord has 5 cusps
I our fibration has at least 5 fibres with multiplicative

reduction
=) �E has at least 5 fibres of type In, where 11 divides all
these n’s

I these contribute at least 5� (p � 1) = 50 to �(X )

Hence, not K 3 !.



Proof of Main Theorem 1

Case : constant j-invariant

I the pn-torsion section is different from the zero section
=) the generic fiber is ordinary
=) the ordinary locus U � P1 is open and dense

I pn � 3 =) the Igusa moduli problem is representable
I constant j-invariant

=) the classifying morphism ' : U // Ig(pn)ord is
constant

I X jU // U is a product family and not birational to a K3
surface

Hence in this case we have pn = 2.



Proof of Main Theorem 1

Case : non-constant j-invariant

I the ordinary locus U � P1 is open and dense
I assume pn � 3, i.e., that the Igusa moduli problem is

representable
=) the classifying morphism ' : U // Ig(pn)ord is
dominant
=) Ig(pn)ord is a rational curve

I Ig(pn)ord is rational () pn � 11 (Igusa ’68)



Proof of Main Theorem 1
Need to exclude the cases p = 11 and p = 9

We have already excluded the case p = 11.

The remaining case pn = 9 is excluded similarly.

I Ig(p2)ord has three cusps
=) our fibration has at least 3 fibres of type In, where p2

divides all these n’s
I these contribute at least 3� (p2 � 1) = 24 to �(X ),

i.e., b2(X ) � �(X ) > 24

Hence, X is not a K3 surface.



Elliptic K 3 surfaces with pn-torsion sections

pn [Ig(pn)ord] deg' description of the family
8 = 23 fine

7 fine

5 fine

4 fine

3 fine

2 not fine isotrivial case

non-isotrivial case



Formal Brauer group and its height for K 3 surfaces

I The functor on the category of finite local k -algebras A with
residue field k

cBr : A 7! ker
�
H2

ét(X � A;Gm) // H2
ét(X ;Gm)

�
is pro-represented by a smooth formal group of dim.
h2(X ;OX ) = 1, the formal Brauer group cBr(X ) of X .
(Artin-Mazur ’77)

I The height h of the formal Brauer group is 1 or an integer
1 � h � 10 and all values are taken. (Artin ’74)

I Moreover, h determines the Newton polygon on second
crystalline cohomology. (Illusie ’79)

I In particular, the extreme cases are as follows:
- h = 1 if and only if Newton- and Hodge- polygon coincide,

i.e., the K3 surface is ordinary, and
- h =1 if and only if the Newton polygon is a straight line,

i.e., the K3 surface is supersingular in the sense of Artin.



The notion of supersingularity

Recall that a surface is called supersingular in the sense of
Shioda if the rank of its Néron–Severi group is equal to its
second Betti number.

I Unirational surfaces are supersingular in the sense of
Shioda. (Shioda ’74)

On the other hand, a surface is called supersingular in the
sense of Artin if its formal Brauer group has infinite height.
(Artin ’74)

I Unirational K3 surfaces are supersingular in the sense of
Artin.

I Supersingularity in the sense of Shioda implies
supersingularity in the sense of Artin.



Some conjectures

For K3 surfaces,
I (Shioda) Shioda-supersingularity implies unirationality,
I (Artin) Artin-supersingularity implies unirationality,
I (Artin) Artin-supersingularity implies

Shioda-supersingularity.
Remark: For elliptic K3 surfaces these two notions of
supersingularity coincide (Artin ’74).
In characteristic 2, there is another conjecture by Artin (Artin
’74), which does not only imply the above conjectures but also
gives a geometric explanation of the above conjectures:

I In characteristic 2, an elliptic fibration on a supersingular
K3 surface arises via Frobenius pullback from a rational
elliptic surface.

Remark : Such a conjecture cannot be true in general in
characteristic p � 3.



Main Theorem 2 (Supersingular characterization)
Let X // P1 be an elliptic K3 surface with p-torsion sections
in characteristic p � 3. Let ' : P1 // Ig(p)ord be the
compactified classifying morphism. Then the following are
equivalent:

1. X arises as Frobenius pullback from a rational elliptic
surface

2. X is unirational
3. X is supersingular
4. the fibration has precisely one fiber with additive reduction
5. ' is totally ramified over the supersingular point of Ig(p)ord

In particular, the conjectures of Artin and Shioda hold for this
class of surfaces.

Remark : This theorem also valid for 4-torsion and 8-torsion
sections.



Main Theorem 2’ (Oridinary characterization)

Let X // P1 be an elliptic K3 surface with p-torsion sections
in characteristic p � 3. Then the following are equivalent:

1. X arises as Frobenius pullback from a K3 surface
2. X is ordinary
3. X is not unirational
4. the fibration has precisely two fibers with additive reduction

Moreover, such surfaces can exist in characteristic p � 5 only.



Key Proposition A
Let X // P1 be an elliptic K3 surface with p-torsion section in
characteristic p, whose fibration does not have constant
j-invariant.
Then the fibration has at least oneand at most two fibres with
potentially supersingular reduction. Moreover,

I if there is one fiber with potentially supersingular reduction
then the formal Brauer group has height h � 2.

I if there are two fibers with potentially supersingular
reduction then the formal Brauer group has height h = 1.

Proof:
I the fibration does not have constant j-invariant

=) the map from the base to the j-line is dominant, surj.
=) 9 at least one fiber with pot. supersingular reduction

I Remaining assertions come from the followin Lemma on
calculating the height of the formal Brauer group from the
Weierstrass equation



Lemma : Height of formal Brauer group

Let an elliptic K 3 surface X be given by a Weierstraß equation

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t)

where the ai(t)’s are polynomials of degree � 2i ,
i.e., ai(t) =

P2i
j=0 aij t j .

Assume that X have p-torsion sections.
We can calculate the height h of the formal Brauer group as
follows:

I For p = 2, h = 1 () a11 6= 0
h � 2 () a11 = 0
h � 3 () a11 = a33 = 0

� � � � � � ([Artin 197]).
I For p = 3, h = 1 () a2

11 + a22 6= 0.
I For p = 5, h = 1 () 2a44 6= 0.
I For p = 7 : � � � � � � by tedious calculation!



Proof of Lemma
p = 2:

I potentially supersingular reduction over t0 , a1(t0) = 0
I K 3 ) deg a1(t) � 2 ) at most two such fibers
I the fibration has two such fibres ) a11 6= 0 ) h = 1
I the fibration has only one such fiber ) a11 = 0 ) h � 2

p = 3:
I may assume a1(t) = 0 after a suitable change of

coordinates
I the Hasse invariant of the generic fiber is
�a2(t) 2 k(t)�=k(t)�2

I 9 3-torsion section ) the Hasse invariant is trivial, i.e.,
�a2(t) is a square

I fibers with potentially supersingular reduction fulfill
0 = a2(t)2

I deg a2(t) � 4 ) there are at most two such fibers
I the fibration has two such fibers , a22 6= 0 , h = 1



Proof of Lemma

p = 5:
I may assume a1(t) = a2(t) = a3(t) = 0
I 9 5-torsion sections ) 2a4(t) = a fourth power (by

computing the Hasse invariant)
I a fiber to have potentially supersingular reduction )

2a4(t) = 0
I deg a4(t) � 8 and 2a4(t) = a fourth power ) at most two

such fibers
I 9 two fibres with potentially supersingular reduction
, 2a44 6= 0 , h = 1.

by tedious calculation !
p = 7 : omit



Key Proposition B
Let X // B be an elliptic fibration with p-torsion sections and
p � 3.

I Every additive fiber has potentially supersingular reduction.
I Every potentially supersingular fiber has additive reduction.

Very rought explanation of the proof :

First assertion (additive =) potentially supersingular) is
essentially by Liedtke-Schröer.

I Igusa moduli problem is fine when p � 3
I we know the degenerate properties of universal elliptic

curves over Ig(pn)ord. (Liedtke-Schröer 08)
I look into j , and universal elliptic curve degenerates into

multiplicative fibers at places of potentially multiplicative
reduction

I only additive fibers can come from potentially
supersingular places



Sketch of the proof of Key Proposition B

Second assertion (potentially supersingular =) additive) is
proved as follows:

I we know the degenerate properties of universal elliptic
curves over Ig(pn)ord. (Liedtke-Schröer 08)

I calculating the intersectin pairing of O section and a
p-torsion section

I translation by a p-torsion section give rise to a wild
automorphism, and may apply the results of
(Dolgachev-Keum ’01) on symplectic automorphism action
for K 3 surfaces and its improved results on elliptic
fibrations

I coclude that p-torsion sections are disjoint from O section
when p � 3

I there does not exist good supersingular reduction



Main Theorem 2 (Supersingular characterization)
Let X // P1 be an elliptic K3 surface with p-torsion sections
in characteristic p � 3. Let ' : P1 // Ig(p)ord be the
compactified classifying morphism. Then the following are
equivalent:

1. X arises as Frobenius pullback from a rational elliptic
surface

2. X is unirational
3. X is supersingular
4. the fibration has precisely one fiber with additive reduction
5. ' is totally ramified over the supersingular point of Ig(p)ord

In particular, the conjectures of Artin and Shioda hold for this
class of surfaces.

Remark : This theorem also valid for 4-torsion and 8-torsion
sections.



Proof of Main Theorem 2

I (1) =) (2) =) (3) holds in general.
I (3) =) (4) comes from Key Propositions A and B.
I Equivalence between (4) and (5) is Key Proposition B.
I (5) =) (1) :

Since we know X // P1 arises as Frobenius pullback
from some elliptic fibration Y // P1, we need to show
that Y is rational.
Let Ipnv , v = 1; ::: be the multiplicative fibers. Since p � 3,
the fibration does not have constant j-invariant and thus
there exist places of potentially multiplicative reduction
which are multiplicative. By Proposition B the potentially
supersingular fiber is additive, say with m components and
Swan conductor � and we obtain

24 = c2(X ) =
X

v
pnv + (2 + � + (m � 1))



Proof of Main Theorem 2

We also know X // P1 arises as Frobenius pullback from
some elliptic fibration Y // P1, which has multiplicative fibers
Inv , v = 1; :::.
This fibration has one additive fiber also with Swan conductor �
and with, say, m0 components. Thus we obtain

c2(Y ) =
X

v
nv +(2+�+(m0�1)) �

22� �

p
+(2+�+(m0�1))

Since p 6= 2, reduction of type I�n with n � 1 is potentially
multiplicative and thus cannot occur as the additive fiber of Y

// P1. Inspecting the list of additive fibers we obtain m0 � 9.
On the other hand, Y is either rational or K3, i.e, c2(Y ) = 12 or
c2(Y ) = 24.



Proof of Main Theorem 2

If p � 5 then � = 0 implies c2(Y ) < 24, which implies that Y is
rational. If p = 3 then c2(Y ) = 24 could only be achieved if
� � 20. However, since

P
n pnv � p = 3, this contradicts

24 = c2(X ) =
X

v
pnv + (2 + � + (m � 1)):

Thus, Y is a rational surface also for p = 3.

Omit the proof of Theorem 2’.



Classifying morphism

For pn � 3 and an elliptic K 3 surface f : X // P1 with
pn-torsion sections, we have a diagram :

X = Y (pn)

f
��

// Y

��

// �E

��

P1 F n
// P1

' // Ig(pn)ord
j // P1;

where ' is the classifying morphism, j is the Galois covering
induced by the j-invariant.

We are going to classify elliptic K 3 surfaces with pn-torsion
sections using the classifying morphisim for each characteristic.

Especially, classify and study the geometry of supersingular
elliptic K 3 surfaces with pn-torsion sections.



Classification in charctersitic 7

There exists only one elliptic K3 surface X // P1 with
7-torsion section in characteristic 7 up to isomorphism. It has
the following invariants:

singular fibers �0 MW�(X ) MW(X )

III;3� I7 1 A1(7) A�
1(7)� (Z=7Z)

The Weierstraß equation is given by the following:

y2 = x3 + tx + t12:

In particular, it is the unique supersingular K3 surface with Artin
invariant �0 = 1.



Classification in charctersitic 7
' : P1 // Ig(7)ord : classifying morphism
�E // Ig(7)ord : the universal curve

I deg' � 2 is impossible by an analysis of the multiplicative
fibers

I hence ' is an isomorphism, proving uniqueness
I �E(7) corresponds in fact a K3 surface, we get existence
I the singular fibres of �E=Ig(7)ord are (III�;3� I1), trivial

lattice T�E = E7
I the singular fibres of �E(7)=Ig(7)ord are (III;3� I7)
I �E is rational, which implies that X is unirational

How to determine the MWL of �E(7) : The (full and narrow)
Mordell-Weil lattices are MW(�E) �= A�

1 and MW�(�E) �= A1 by the
table. (Oguiso-Shioda ’91)
Now, Frobenius induces an inclusion of lattices

MW(Y)free(p) � MW(X)free;

which is of some finite index �.



Classification in charctersitic 7

Taking determinants, we obtain

�2 =
det MW(Y )free(p)

det MW(X )free
:

Since we have

det NS(X ) =
det MW(X )free � det T

jMW(X )torj2

for elliptic surface whose j-invariant is not constant.

�2 =
det A�

1(7)
det NS(X ) jMW(X )torj2

det(U�A�3
6 �A1) =

1
2 � 7

72�0(X) � 72 �7
3�2;

which yields � = 1. Thus, �0 = 1 and
MW(X ) �= A�

1(7)� (Z=7Z).



Elliptic K 3 surfaces with pn-torsion sections

pn [Ig(pn)ord] deg' description of the family
8 = 23 fine

7 fine 1 unique supersingular K 3 (�0 = 1)

5 fine

4 fine

3 fine

2 not fine isotrivial case

non-isotrivial case



Classification in charctersitic 5

Let ' : P1 // Ig(5)ord be a classifying morphism. Then,

deg' = 2 () X is a K3 surface

More precisely, the surfaces have the following invariants:

singular fibers dim �0 MW�(X ) MW(X )

2� II;4� I5 2
2� II; I10;2� I5 1
2� II;2� I10 0
IV;4� I5 1 2 A2(5) A�

2(5)� Z=5Z
IV; I10;2� I5 0 1 h30i h5

6i � Z=5Z

Here, dim denotes the dimension of the family. For the
supersingular surfaces, this list also gives Artin invariants �0
and their (narrow) Mordell–Weil lattices.



Classification in charctersitic 5

Proof: (Similar to the characteristic 7 case.)
I The universal elliptic curve over the Igusa curve �E

// Ig(5)ord is given by the Weierstraß

y2 = x3 + 3t4x + t5 ;

which has a singular fiber of type II� over t = 0 and fibers
of type I1 over t = �1.

I Note that this surface is a rational extremal elliptic surface.
I We write the classifying morphism ' = '�� : Ig(5)ord

// P1 as

t =
�s2 + �

s2 + 1
whose branch points are t = � and t = �, where t (resp. s)
is a local parameter of P1 (resp. Ig(5)ord).



Classification in charctersitic 5
I Then our surfaces arise as pullbacks along F and '��:

X = Y (p) ����! Y ����! E??y ??y ??y
P1 F

����! P1 '��
����! Ig(5)ord

I The elliptic surface Y is given by the Weierstraß equation

y2 = x3 + 3(�s2 + �)4x + (�s2 + �)5 (s2 + 1);

and depending on � and � we obtain the following list
giving the explicit classification of our surfaces.

f�; �g \ f0;�1g singular fibers of X singular fibers of Y Y
; 2� II;4� I5 2� II�;4� I1 K3
f1g; f�1g 2� II; I10;2� I5 2� II�; I2;2� I1 K3
f1;�1g 2� II;2� I10 2� II�;2� I2 K3
f0g IV;4� I5 IV�;4� I1 rational
f0;1g; f0;�1g IV; I10;2� I5 IV�; I2;2� I1 rational



Classification in charctersitic 5
By Main Theorem 2 the supersingular surfaces are precisely
those that arise as Frobenius pullbacks from rational elliptic
surfaces. It remains to determine the Mordell–Weil groups and
Artin invariants. On can use the similar argument as
characteristic 7. (Omit it.)

Remark : Since Y has two singular fibers of type II� when it is
K 3 surface, we can apply Shioda’s sandwich theorem for
studying it.

Further question : Is the supersingular family complete ?



Proposition for completeness

Let X be an elliptic K3 surface with pn-torsion section in
characteristic p. Assume that X is supersingular with
Artin-invariant �0.
Then, every K3 surface which is supersingular in the sense of
Shioda with Artin invariant �0 in characteristic p possesses an
elliptic fibration with pn-torsion section.

Proof:
I a (quasi-)elliptic fibration on X () U ,! NS(X ) (isometry)

(U : a hyperbolic lattice of rank 2)
I the trivial lattice T is the sub-lattice of NS(X ) generated by

U and all x 2 U? with x2 = �2
I the torsion sections of the fibration correspond to the

torsion of NS(X )=T



Proof of Proposition for completeness
I the Néron–Severi group of a (Shioda-)supersingular K3

surface is uniquely determined by p and �0 (Rudakov
Shafarevich 1979)

I one of these surfaces possesses a (quasi-)elliptic fibration
with pn-torsion section ) so do all of them

I need to check the genus 1 fibration on another K3 surface
Y with the same p and �0 corresponding to U ,! NS(X ) is
elliptic, not quas-elliptic.

I if p � 5 or if rank(T ) < 22 then the fibration on Y is
automatically elliptic and the quasi-elliptic case cannot
occur at all

I if p � 3 and rank(T ) = 22 then the elliptic fibration on X is
extremal and these K3 surfaces have been explicitly
classified (I. 2002)

I these surfaces have Artin invariant �0 = 1, i.e., X is
isomorphic to Y



Completeness results in characteristic 5

Every (Shioda-)supersingular K3 surface with �0 � 2 in
characteristic 5 possesses an elliptic fibration with 5-torsion
section.



Elliptic K 3 surfaces with pn-torsion sections

pn [Ig(pn)ord] deg' description of the family
8 = 23 fine

7 fine 1 unique supersingular K 3 (�0 = 1)

5 fine 2 2-dim ordinary K 3’s
� 1-dim s.s. K 3’s (�0 � 2)

4 fine

3 fine

2 not fine isotrivial case

non-isotrivial case



Classification in charctersitic 3
Let ' : P1 // Ig(3)ord be a classifying morphism. Then,

2 � deg' � 6 () X is a K3 surface

More precisely,
1. deg' = 2 and '�1(O) consists of two points.
2. deg' = 3, ' is separable and '�1(O) consists of two

points.
3. deg' = 4 and '�1(O) consists of one or two points.
4. deg' = 5 and '�1(O) consists of one point or two points

with ramification index e = 2 and e = 3.
5. deg' = 6 and '�1(O) consists of one point or two points

with ramification index e = 3.
Conversely, if ' is as above then the associated elliptic fibration
with 3-torsion section is a K3 surface.
We denote by O 2 Ig(3)ord the unique supersingular point.



Classification in charctersitic 3

Every (Shioda-)supersingular K3 surface with Artin invariant
�0 � 6 in characteristic 3 possesses an elliptic fibration with
3-torsion section.
The complete list of these (supersingular) surfaces is given by
the following table:



Supersingular K 3 surfaces in charctersitic 3
deg' = 6 (separable)

singular fibers dim �0 MW�(X) MW(X)
II4; 6 � I3 5 6 E8(3) E8(3)� Z=3Z
II4; I6; I3 � 4 4 5 E7(3) E�

7 (3)� Z=3Z
II4; I9; I3 � 3 3 4 E6(3) E�

6 (3)� Z=3Z
II4; I6 � 2; I3 � 2 3 4 D6(3) D�

6 (3)� Z=3Z
II4; I12; I3 � 2 2 3 D5(3) D�

5 (3)� Z=3Z
II4; I6 � 3 2 3 D4(3)� A1(3) D�

4 (3)� A�1(3)� Z=3Z
II4; I9; I6; I3 2 3 A5(3) A�5(3)� Z=3Z
II4; I15; I3 1 2 A4(3) A�4(3)� Z=3Z
II4; I12; I6 1 2 A3(3)� A1(3) A�3(3)� A�1(3)� Z=3Z
IV2; 6 � I3 4 5 E6(3) E�

6 (3)� Z=3Z
IV2; I6; I3 � 4 3 4 A5(3) A�5(3)� Z=3Z
IV2; I9; I3 � 3 2 3 A2(3)�2 A�2(3)

�2 � Z=3Z
IV2; I6 � 2; I3 � 2 2 3 L4(3) L�4(3)� Z=3Z
IV2; I12; I3 � 2 1 2 L3(3) L�3(3)� Z=3Z
IV2; I6 � 3 1 2 A1(3)� L2(3) A�1(3)� L�2(3)� Z=3Z
I�0;0; I3 � 6 3 4 D4(3) D�

4 (3)� Z=3Z
I�0;0; I6; 4 � I3 2 3 A1(3)�3 A�1(3)

�3 � Z=3Z
I�0;0; I6 � 2; I3 � 2 1 2 A1(3)�2 A�1(3)

�2 � Z=6Z
I�0;0; I9; I3 � 3 1 2 L2(3) L�2(3)� Z=3Z
I�0;0; I6 � 3 0 1 A1(3) A�1(3)� Z=6Z � Z=2Z
I�0;0; I12; I3 � 2 0 1 h12i h 3

4 i � Z=6Z



Supersingular K 3 surfaces in charctersitic 3

deg' = 6 (inseparable)

singular fibers dim �0 MW�(X ) MW(X )

IV2;2� I9 1 2 A2(3) A�
2(3)� Z=3Z

IV2; I18 0 1 h18i h1
2i � Z=3Z

deg' = 5

singular fibers dim �0 MW�(X ) MW(X )

IV5;5� I3 4 5 E8(3) 3:(E8(3))� Z=3Z
IV5; I6;3� I3 3 4 E7(3) 3:(E�

7 (3))� Z=3Z
IV5;2� I6; I3 2 3 D6(3) 3:(D�

6(3))� Z=3Z
IV5; I9;2� I3 2 3 E6(3) 3:(E�

6 (3))� Z=3Z
IV5; I9; I6 1 2 A5(3) 3:(A�

5(3))� Z=3Z
IV5; I12; I3 1 2 D5(3) 3:(D�

5(3))� Z=3Z
IV5; I15 0 1 A4(3) 3:(A�

4(3))� Z=3Z



Supersingular K 3 surfaces in charctersitic 3

deg' = 4

singular fibers dim �0 MW�(X ) MW(X )
IV�

4;4� I3 3 4 E6(3) E�

6 (3)� Z=3Z
IV�

4; I6;2� I3 2 3 A5(3) A�5(3)� Z=3Z
IV�

4; I6; I6 1 2 L4(3) L�4(3)� Z=3Z
IV�

4; I9; I3 1 2 A2(3)�2 A�2(3)
�2 � Z=3Z

IV�

4; I12 0 1 L3(3) L�3(3)� Z=3Z

Here, L2, L3, and L4 are lattices of rank 2, 3, 4, all of determinant 12,
whose matrices are given by

L2 =

�
4 �2
�2 4

�
; L3 =

0@ 2 0 �1
0 2 �1
�1 �1 4

1A ; L4 =

0BB@
4 �1 0 1
�1 2 �1 0
0 �1 2 �1
1 0 �1 2

1CCA :

Also, the notation 3:L for a lattice L stands for a lattice that has L as a
sublattice of index 3.



Proof and related geometry
Let us concentrate on supersingular K 3 surfaces with 3-torsion
sections.

I the classifying morphism ' is totally ramified over the
supersingular point O 2 Ig(3)ord

I this gives 4 � deg' � 6

Explicit equations of Y :
let f3(s), f4(s) and f5(s) be polynomials of degree 3, 4 and 5
with no zero in s = 0. Then we substitute

t =
s6

f5(s)
; t =

s5

f4(s)
and t =

s4

f3(s)

into the Weierstraß equation y2 + txy = x3 � t5 of the universal
family over Ig(3)ord.
In all cases this leads to a Weierstraß equation

y2 = x3 + s2x2 + s5 + r4s4 + r3s3 + r2s2 + r1s + r0

for certain (r4; r3; r2; r1; r0) 2 A5
k .



Proof and related geometry

Depending on the degree of ' these coefficients satisfy the
following conditions:

deg' = 6 : r1r0 6= 0
deg' = 5 : r1 6= 0; r0 = 0
deg' = 4 : r2 6= 0; r1 = r0 = 0

Relation with the semi-universal deformation of a RDP:
It is remarkable that these rational elliptic surfaces appear in
the family of elliptic surfaces related to the semi-universal
deformation of the E2

8 -singularity in characteristic 3, which is
given by

y2 = x3 +(t2+s)x2 +(q1t+q0)x + t5 + r4t4 + r3t3 + r2t2 + r1t + r0:

To obtain elliptic K3 surfaces with 3-torsion section we have to
take the Frobenius pullback of these surfaces.



Proof and related geometry
Then the non-trivial 3-torsion sections of the fibration are
explicitly given by

(�(�5 + r
1
3

4 �
4 + r

1
3

3 �
3 + r

1
3

2 �
2 + r

1
3

1 � + r
1
3

0 );

��3(�5 + r
1
3

4 �
4 + r

1
3

3 �
3 + r

1
3

2 �
2 + r

1
3

1 � + r
1
3

0 ))

(Needs to modify slightly for deg' = 4.)

Calculation of the MWL’s and the Artin invariants:
I the index of MW(Y )free(3) inside MW(X )free is related to

the Artin invariant of X for each case in the table
=) obtain an upper bound for the Artin invariant

I all the surfaces in the table can be realized inside the
family corresponding to the semi-universal deformation of
the E2

8 -singularity
=) the dimension of the surface having the given type of
singular fibers inside the moduli space is bounded from
below



Proof and related geometry
I gives the Artin invariants for the cases deg' = 4 and

deg' = 6.
I need a more precise analysis for the case deg' = 5

I X : an elliptic K3 surface with 3-torsion sections whose
singular fibers are of type IV5;5� I3
=) �2 = 312�2�0(X); � = [MW(X )free : MW(Y )free(3)]
=) �0(X ) � 6.

I these surfaces are realized inside the semi-universal
deformation of the E2

8 -singularity
=) �0(X ) � 5

I have to decide whether � = 1 or � = 3 holds true
- assume � = 1
- MW(Y )free = MW�(Y ) = E8 =) MW(X )free = MW�(X ) =

E8(3)
- the 3-torsion sections of this surface do not lie in

MW�(X ) =) a contradiction
I � = 3 and �0(X ) = 5

I every (Shioda-)supersingular K3 surface with �0 � 6
possesses an elliptic fibration with 3-torsion section



Elliptic K 3 surfaces with pn-torsion sections

pn [Ig(pn)ord] deg' description of the family
8 = 23 fine

7 fine 1 unique supersingular K 3 (�0 = 1)

5 fine 2 2-dim ordinary K 3’s
� 1-dim s.s. K 3’s (�0 � 2)

4 fine

3 fine 2; � � � ;6 6-dim ordinary K 3’s
� 5-dim s.s. K 3’s (�0 � 6)

2 not fine isotrivial case

non-isotrivial case



Classification in charctersitic 2, 2-torsion sections
Case: constant j-invariant

1. one additive fiber of type I�12;6, and then h � 2, or
2. two additive fibers, both of type I�4;2, and then h = 1.

Case : non-constant j-invariant
1. the fibration has precisely one additive fiber, which is

potentially supersingular. In this case h � 2 holds true.
2. the fibration is semi-stable and there is precisely one fiber

with good and supersingular reduction. Moreover, X is
unirational and h =1.

3. the fibration has precisely two fibers with additive
reduction, both of which are potentially supersingular. In
this case h = 1 holds true.

4. the fibration has precisely two fibers with additive
reduction, one of which is potentially supersingular and the
other one is potentially ordinary of type I�4;2. In this case
h = 1 holds true.



Classification in charctersitic 2, 2-torsion sections
Case: constant j-invariant

1. one additive fiber of type I�12;6, and then h � 2, or
2. two additive fibers, both of type I�4;2, and then h = 1.

Case : non-constant j-invariant
1. the fibration has precisely one additive fiber, which is

potentially supersingular. In this case h � 2 holds true.
2. the fibration is semi-stable and there is precisely one fiber

with good and supersingular reduction. Moreover, X is
unirational and h =1.

3. the fibration has precisely two fibers with additive
reduction, both of which are potentially supersingular. In
this case h = 1 holds true.

4. the fibration has precisely two fibers with additive
reduction, one of which is potentially supersingular and the
other one is potentially ordinary of type I�4;2. In this case
h = 1 holds true.



Theorem for constant j-invariant case
Every elliptically fibered K3 surface with constant j-invariant
and 2-torsion section in characteristic 2 arises as minimal
desingularization of

(E1 � E2)=G // E2=G �= P1 ; (1)

where E1 is an ordinary and E2 is an arbitrary elliptic curve, and
G �= Z=2Z acts via the sign involution on each factor.
Conversely, for any two elliptic curves E1, E2, where E1 is
ordinary, a minimal desingularization of (1) yields an elliptic K3
surface with constant j-invariant and 2-torsion section. More
precisely,

E2 singular fibers � h
ordinary 2� I�4;2 18 � � � 20 1
supersingular I�12;6 18 2

In particular, these surfaces cannot be supersingular, and h = 2
is possible.



Classification in charctersitic 2, 2-torsion sections
Case: constant j-invariant

1. one additive fiber of type I�12;6, and then h � 2, or
2. two additive fibers, both of type I�4;2, and then h = 1.

Case : non-constant j-invariant
1. the fibration has precisely one additive fiber, which is

potentially supersingular. In this case h � 2 holds true.
2. the fibration is semi-stable and there is precisely one fiber

with good and supersingular reduction. Moreover, X is
unirational and h =1.

3. the fibration has precisely two fibers with additive
reduction, both of which are potentially supersingular. In
this case h = 1 holds true.

4. the fibration has precisely two fibers with additive
reduction, one of which is potentially supersingular and the
other one is potentially ordinary of type I�4;2. In this case
h = 1 holds true.



E4
8 -family

Elliptic K 3 surfaces with 2-torsion sections in the cases 1 and 2
in non-constant j-invariant are realized using E4

8 -family.
Consider the singularity defined by the affine equation in A3

k :

E4
8 : y2 + txy = x3 + t5

and the semiuniversal deformation of this singularity with
parameter � = (p0;p1;q; r4; r3; r2; r1; r0) 2 A8

k ,

y2 + txy +(p0 +p1t)y = x3 +qx + t5 + r4t4 + r3t3 + r2t2 + r1t + r0:

Taking Kodaira-Néron model,
we get the elliptic surface f� : X�

// P1.
Inside the parameter space A8

k , let us write the semistable
locus as S,

S := f� 2 A8
k jp0 6= 0g:



E4
8 -family

We pick up special members which dominate other
sub-members from E4

8 -family.

For � 2 S, an elliptic surface X� is called a basic member if the
singular fibers consist of one In with some 1 � n � 9 and
(12� n) I1’s. We write this X� as X (In).

For � 2 A8
k � S, an elliptic surface X� is called a basic member

if the singular fiber over t = 0 is of additive type T and all the
other singular fibers are all I1’s. We write this X� as X (T ).

Semistable locus S of A8
k has the stratification as follows:

A8
k � S = X(I1) � X(I2) � � � � � X(I8) � X(I9)

Each stratum X(Il)(l > 1) has codimension 1 inside X(Il�1),
thus a stratum X(Il) has dimension 9� l .



E4
8 -family

A general member of each stratum has the following
Mordell-Weil lattices:

Type of singular fiber MWL narrow MWL
I1 � 12 E8 E8

I2; I1 � 10 E�
7 E7

I3; I1 � 9 E�
6 E6

I4; I1 � 8 D�
5 D5

I5; I1 � 7 A�
4 A4

I6; I1 � 6 A�
2 � A�

1 A2 � A1

I7; I1 � 5 1
7

 
2 1
1 4

!  
4 �2
�1 2

!
I8; I1 � 4 h1

8i h8i
I9; I1 � 3 Z=3Z f0g



Frobenius base change gives the case 1
For a general member of X(Il) with 1 � l � 9, we take
Frobenius base change once to get the new family X̃(Il). A
general member X̃ (Il) of X̃(Il) is a supersingular elliptic K 3
surface with the following data:

l Type of MWL narrow MWL Artin invariant,
singular fibers dim X̃(Il)

1 I2 � 12 E8(2)� Z=2Z E8(2) 9; 8
2 I4; I2 � 10 E�

7 (2)� Z=2Z E7(2) 8; 7
3 I6; I2 � 9 E�

6 (2)� Z=2Z E6(2) 7; 6
4 I8; I2 � 8 D�

5 (2)� Z=2Z D5(2) 6; 5
5 I10; I2 � 7 A�4(2)� Z=2Z A4(2) 5; 4
6 I12; I2 � 6 A�2(2)� A�1(2)� Z=2Z A2(2)� A1(2) 4; 3

7 I14; I2 � 5 2
7

�
2 1
1 4

�
� Z=2Z

�
8 �2
�2 4

�
3; 2

8 I16; I2 � 4 h 1
4 i � Z=2Z h16i 2; 1

9 I18; I2 � 3 Z=3Z � Z=2Z f0g 1; 0



E4
8 -family

Next we look into the another subfamily, I�0;2-family, which is
“lower part” of non-semistable family. This gives a
4-dimensional stratification. Generically, a member of this
family can be written as the following Weierstrass equation after
a change of parameters.

y2 + txy = x3 + p
1
2
1 tx2 + r

1
2

2 t2x + t5 + r4t4 + r3t3

This generic member have a singular fiber of type I�0;2 over
t = 0 and four other singular fibers of type I1.

After couple of Frobenius pullbacks they give examples for the
case 1.

Remark: Ig(4)ord and Ig(8)ord appear in the stratification.



Frobenius tower of stratification

not K 3 not K 3//

not K 3

not K 3
��

not K 3 not K 3// not K 3

not K 3
��

not K 3 not K 3//

not K 3

not K 3
��

not K 3 not K 3// not K 3

not K 3
��

(I�0;2; I16) (I�1;1; I16)
//

not K 3

(I�0;2; I16)
��

not K 3 not K 3// not K 3

(I�1;1; I16)
��

+3 not K 3 (I�0;2; 2I8)
//

not K 3

not K 3
��

not K 3 not K 3// not K 3

(I�0;2; 2I8)
��

(I�0;2; 2I8) (I�1;1; 2I8)
//

not K 3

(I�0;2; 2I8)
��

not K 3 not K 3// not K 3

(I�1;1; 2I8)
��

(II�2 ; I8) (III1; I8)
//

(I�0;2; 2I8)

(II�2 ; I8)
��

(I�0;2; 2I8) (I�1;1; 2I8)
// (I�1;1; 2I8)

(III1; I8)
��

+3

(I�3;3; 3I4) (II�2 ; 2I4)
//

(I�0;2; 4I4)

(I�3;3; 3I4)
��

(I�0;2; 4I4) (I�1;1; 4I4)
// (I�1;1; 4I4)

(II�2 ; 2I4)
��

(II�2 ; 2I4) (III1; 2I4)
//

(I�1;1; 4I4)

(II�2 ; 2I4)
��

(I�1;1; 4I4) (IV�0 ; 4I4)
// (IV�0 ; 4I4)

(III1; 2I4)
��

(I�0;2; I4) (I�1;1; I4)
//

(II�2 ; 2I4)

(I�0;2; I4)
��

(II�2 ; 2I4) (III1; 2I4)
// (III1; 2I4)

(I�1;1; I4)
��

+3 (III�3 ; 3I2) (I�0;2; 2I2)
//

(II�2 ; 4I2)

(III�3 ; 3I2)
��

(II�2 ; 4I2) (III�1 ; 4I2)
// (III�1 ; 4I2)

(I�0;2; 2I2)
��

(I�0;2; 2I2) (I�1;1; 2I2)
//

(III�1 ; 4I2)

(I�0;2; 2I2)
��

(III�1 ; 4I2) (IV0; 4I2)
// (IV0; 4I2)

(I�1;1; 2I2)
��

(I�2;2; I2) (III�1 ; I2)
//

(I�0;2; 2I2)

(I�2;2; I2)
��

(I�0;2; 2I2) (I�1;1; 2I2)
// (I�1;1; 2I2)

(III�1 ; I2)
��

+3

(I�0;3; 3I1) (I�2;2; 2I1)
//

(I�0;2; 4I1)

(I�0;3; 3I1)
��

(I�0;2; 4I1) (I�1;1; 4I1)
// (I�1;1; 4I1)

(I�2;2; 2I1)
��

(I�2;2; 2I1) (III�1 ; 2I1) = �E=Ig(8)ord//

(I�1;1; 4I1)

(I�2;2; 2I1)
��

(I�1;1; 4I1) (IV�0 ; 4I1)
// (IV�0 ; 4I1)

(III�1 ; 2I1) = �E=Ig(8)ord

��

(I�3;2; I1) (II�1 ; I1) = �E=Ig(4)ord//

(I�2;2; 2I1)

(I�3;2; I1)
��

(I�2;2; 2I1) (III�1 ; 2I1) = �E=Ig(8)ord// (III�1 ; 2I1) = �E=Ig(8)ord

(II�1 ; I1) = �E=Ig(4)ord

��



Sections of order 8

There exists only one elliptic K3 surface X // P1 with
8-torsion section in characteristic 2 up to isomorphism. It has
the following invariants:

singular fibers �0 MW�(X ) MW(X )

I�1;1;2� I8 1 A1(2) A�
1(2)� (Z=8Z)

The Weierstraß equation is given by the following:

y2 + t2xy = x3 + x + t4:

In particular, it is the unique supersingular K3 surface with Artin
invariant �0 = 1.



Sections of order 4

In characteristic 2, the classifying morphism ' for an elliptic K3
surface with 4-torsion section is finite of degree 2 � deg' � 4.
More precisely,

1. deg' = 2, ' is separable and '�1(O) consists of two
points, or

2. deg' = 3 and '�1(O) consists of one points or two points,
or

3. deg' = 4 and '�1(O) consists of one point or two points
with ramification index e = 2 (wildly ramified).

Conversely, if ' is as above then the associated elliptic fibration
with 4-torsion section is a K3 surface.



Sections of order 4

Every (Shioda-)supersingular K3 surface with Artin invariant
�0 � 4 in characteristic 2 possesses an elliptic fibration with
4-torsion section.
The complete list of these surfaces is given by the following
table
deg' singular fibers dim �0 MW�(X ) MW(X )

3 I�3;3 3 � I4 2 3 D4(2) D�

4 (2)� Z=4Z
I�3;3 I8; I4 1 2 A3 A�3 � Z=4Z
I�3;3 I12 0 1 A2 A�2 � Z=4Z

4 ' separable:
I�0;2 4 � I4 3 4 D4(2) D�

4 (2)� Z=4Z
I�0;2 I8; 2 � I4 2 3 A3(2) A�3(2)� Z=4Z
I�0;2 I12; I4 1 2 A2(2) A�2(2)� Z=4Z

' inseparable but not purely inseparable:
I�1;1 2 � I8 0 1 A1(2) A�1(2)� Z=8Z

' purely inseparable:
I�1;1 I16 0 1 f0g Z=4Z



Elliptic K 3 surfaces with pn-torsion sections

pn [Ig(pn)ord] deg' description of the family
8 = 23 fine 1 unique supersingular K 3 (�0 = 1)

7 fine 1 unique supersingular K 3 (�0 = 1)

5 fine 2 2-dim ordinary K 3’s
� 1-dim s.s. K 3’s (�0 � 2)

4 fine 2;3;4 4-dim ordinary K 3’s
� 3-dim s.s. K 3’s (�0 � 4)

3 fine 2; � � � ;6 6-dim ordinary K 3’s
� 5-dim s.s. K 3’s (�0 � 6)

2 not fine isotrivial case
Kummer surfaces

non-isotrivial case
Many elliptic surfaces

have 2-torsions



THE END


