DEHN TWIST PRESENTATIONS OF FINITE GROUP ACTIONS ON THE ORIENTED SURFACES OF GENUS 3

SUSUMU HIROSE

Abstract

In this note we give presentations of all finite subgroups of the mapping class group of a closed surface of genus 3 by Dehn twists up to conjugacy.

1. Introduction

Let Σ_{g} be a closed oriented surface of genus g, and $\operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ a group of orientation preserving homeomorphisms over Σ_{g}. In this paper, for two elements f_{1}, f_{2} $\in \operatorname{Homeo}_{+}\left(\Sigma_{g}\right), f_{1} f_{2}$ means appling f_{1} and then f_{2}. The group $\mathcal{M}\left(\Sigma_{g}\right)$ of isotopy classes of $\operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ is called the mapping class group of Σ_{g}. Any finite subgroup of $\mathcal{M}\left(\Sigma_{g}\right)$ can be considered as the automorphism group of some algebraic curve, and hence finite subgroups of $\mathcal{M}\left(\Sigma_{g}\right)$ are investigated in various contexts. On the other

Figure 1
hand, Dehn [3] and Lickorish [11] proved that $\mathcal{M}\left(\Sigma_{g}\right)$ is generated by Dehn twists. For a simple closed curve c on Σ_{g}, the homeomorphism t_{c} on Σ_{g} indicated in Figure 1 is called the Dehn twist about c. Since actions on Dehn twists on geometric objects on Σ_{g}, for example homology groups of Σ_{g}, are easy to understand, presentations of elements in $\mathcal{M}\left(\Sigma_{g}\right)$ by Dehn twists are useful for the investigation on $\mathcal{M}\left(\Sigma_{g}\right)$. For periodic elements in $\mathcal{M}\left(\Sigma_{g}\right)$, Ishizaka [6] completely obtained Dehn twist presentations in hyperelliptic case, and the author [5] obtained Dehn twist presentations when g is at most 4. Nakamura-Nakanishi [12] obtained Dehn twist presentations of finite groups actions on Σ_{2}. In this note, we investigate on Dehn twist presentations of finite group actions on Σ_{3}.

[^0]
2. Dehn twist presentations for the periodic maps over Σ_{3}

At first, we explain the classification of periodic map over Σ_{g} by Nielsen [13]. A homeomorphism f over Σ_{g} is called periodic if there is an integer $n \geq 1$ which satisfies $f^{n}=i d_{\Sigma_{g}}$. The least integer n which satisfies the above condition is called the period of f. Let n be the period of periodic map f over Σ_{g}. A point p on Σ_{g} is a multiple point if there is an integer k such that $0<k<n$ and $f^{k}(p)=p$, and $M_{f} \subset \Sigma_{g}$ denotes the set of multiple points of f. Let Σ_{g} / f be the orbit space of f, and $\pi_{f}: \Sigma_{g} \rightarrow \Sigma_{g} / f$ the quotient map, i.e. a map defined by $\pi_{f}(x)=[x]$, where $[x]$ is the point on Σ_{g} / f represented by the point $x \in \Sigma_{g}$. Then π_{f} is an n-fold branched covering ramified at $\pi_{f}\left(M_{f}\right) \subset \Sigma_{g} / f$. Hence, we call $B_{f}=\pi_{f}\left(M_{f}\right)$ a set of branch point. In the above situation, $\left.\pi_{f}\right|_{\Sigma_{g} \backslash M_{f}}: \Sigma_{g} \backslash M_{f} \rightarrow\left(\Sigma_{g} / f\right) \backslash B_{f}$ is an n-fold covering in an ordinary meaning.

We define a homomorphism $\Omega_{f}: \pi_{1}\left(\left(\Sigma_{g} / f\right) \backslash B_{f}, x\right) \rightarrow \mathbb{Z}_{n}$ describing this n-fold covering $\left.\pi_{f}\right|_{\Sigma_{g} \backslash M_{f}}$ as follows. We choose a point \tilde{x} in Σ_{g} such that $\pi_{f}(\tilde{x})=x$. Let l : $[0,1] \rightarrow\left(\Sigma_{g} / f\right) \backslash B_{f}$ be a loop satisfying $l(0)=l(1)=x$. We make a lift $\tilde{l}:[0,1] \rightarrow \Sigma_{g}$ of l which begins from $\tilde{l}(0)=\tilde{x}$, then we see $\pi_{f}(\tilde{l}(1))=l(1)=x$, i.e., $\tilde{l}(1)$ is in the orbit of $\tilde{l}(0)=\tilde{x}$ by the periodic map f, hence there is an integer k such that $f^{k}(\tilde{x})=\tilde{l}(1)$. We set $\Omega_{f}([l])=k \in \mathbb{Z}_{n}$. Since \mathbb{Z}_{n} is an Abelian group, this homomorphism Ω_{f} induces a homomorphism $\omega_{f}: H_{1}\left(\left(\Sigma_{g} / f\right) \backslash B_{f}\right) \rightarrow \mathbb{Z}_{n}$.

Two periodic maps f, f^{\prime} over Σ_{g} are conjugate if there is a homomorphism g from Σ_{g} to itself such that $f^{\prime}=g \circ f \circ g^{-1}$.

For each branch point $Q_{i} \in B_{f}$ of f, we choose mutually disjoint small disk $D_{Q_{i}}$ and orient the boundary $S_{Q_{i}}$ of $D_{Q_{i}}$ clockwisely.

Theorem 1. [13] Two periodic maps f, f^{\prime} over Σ_{g} are conjugate if and only if the following three conditions are satisfied,
(1) the period of $f=$ the period of f^{\prime},
(2) the number of elements of $B_{f}=$ the number of elements of $B_{f^{\prime}}$,
(3) if we change the numbering of $B_{f^{\prime}}=\left\{Q_{1}^{\prime}, Q_{2}^{\prime}, \cdots, Q_{b}^{\prime}\right\}$ properly, we have $\omega_{f}\left(S_{Q_{i}}\right)=$ $\omega_{f^{\prime}}\left(S_{Q_{i}^{\prime}}\right)$ for each i.

By the above theorem, the notation $\left(n, \frac{\theta_{1}}{n}+\cdots+\frac{\theta_{b}}{n}\right)$, where $n=$ the period of $f, \theta_{i}=\omega_{f}\left(S_{Q_{i}}\right)$, completely determines the conjugacy class of f. This notation is introduced by Ashikaga and Ishizaka [1] and called total valency.

Dehn twist presentations of periodic maps over Σ_{3} are obtained as follows.
Theorem 2. [5] Any periodic map on Σ_{3} is a power of some of the following periodic maps,

Figure 2
$f_{3,1}=\left(14, \frac{1}{14}+\frac{3}{7}+\frac{1}{2}\right), f_{3,2}=\left(12, \frac{1}{12}+\frac{5}{12}+\frac{1}{2}\right), f_{3,3}=\left(8, \frac{1}{8}+\frac{1}{8}+\frac{3}{4}\right)$, $f_{3,4}=\left(4, \frac{1}{2}+\frac{1}{2}\right), f_{3,5}=(2),, f_{3,6}=\left(12, \frac{1}{12}+\frac{1}{4}+\frac{2}{3}\right), f_{3,7}=\left(8, \frac{1}{8}+\frac{1}{4}+\frac{5}{8}\right)$, $f_{3,8}=\left(9, \frac{1}{9}+\frac{1}{3}+\frac{5}{9}\right), f_{3,9}=\left(7, \frac{1}{7}+\frac{2}{7}+\frac{4}{7}\right)$.

Up to conjugacy, these periodic maps are presented as products of Dehn twists as follows. In the following presentatins k means the Dehn twist about the simple closed curve c_{k} in Figure 2.

$$
\begin{aligned}
& f_{3,1}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, \quad f_{3,2}=6 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, \quad f_{3,3}=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, \\
& f_{3,4}=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot(7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)^{3}, \\
& f_{3,5}=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot(7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)^{5}, \\
& f_{3,6}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 8, \quad f_{3,7}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 4 \cdot 3 \cdot 8, \quad f_{3,8}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 8, \\
& f_{3,9}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 8 .
\end{aligned}
$$

3. Maximal finite group actions over Σ_{3} and their Dehn twist PRESENTATIONS

An injection ϵ from a finite group \mathcal{G} to $\operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ is called the action of \mathcal{G} over Σ_{g}. In this paper, the group \mathcal{G} acts on Σ_{3} from the right; the action of $g \in \mathcal{G}$ on $x \in \Sigma_{3}$ is written as $x \epsilon(g)$ or $x g$. For a system of generators $\left\{g_{1}, \ldots, g_{k}\right\}$ of \mathcal{G}, we call a system of Dehn twist presentations of the isotopy classes of $\left\{\epsilon\left(g_{1}\right), \ldots, \epsilon\left(g_{k}\right)\right\}$ a Dehn twist presentation for the finite group action $\epsilon: \mathcal{G} \rightarrow \operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$. Two finite group actions $\epsilon_{1}, \epsilon_{2}: \mathcal{G} \rightarrow \operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ are equivalent if there is an automorphism ω of \mathcal{G} and an orientation preserving homeomorphism h over Σ_{g} which satisfy $\epsilon_{2}(g)=h^{-1} \epsilon_{1}(\omega(g)) h$ for any $g \in \mathcal{G}$.

For an action of a finite group \mathcal{G} over $\Sigma_{g}, \epsilon: \mathcal{G} \rightarrow \operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ and a subgroup \mathcal{H} of \mathcal{G}, we can define an action of \mathcal{H} over Σ_{g} by the restriction $\left.\epsilon\right|_{\mathcal{H}}: \mathcal{H} \rightarrow \operatorname{Homeo}_{+}\left(\Sigma_{g}\right)$ and we call this action a subgroup action of ϵ. If we obtain a Dehn twist presentation of a
action ϵ of \mathcal{G} over Σ_{g}, then we obtain a Dehn twist presentation of a subgroup action $\epsilon_{\mathcal{H}}$ automatically. Therefore, we will obtain Dehn twist presentations of maximal finite group actions over Σ_{3}.

We remark here that we checked Dehn twist presentations by using T4M7 * implemented by K. Ahara, T. Sakasai, M. Suzuki.

Based on the classification of finite group actions on Σ_{3} by Broughton [2], we see:
Proposition 3. Any finite group action on Σ_{3} is a subgroup action of the actions of following groups:

$$
\mathbb{Z}_{9}, \mathbb{Z}_{14}, D_{2,12,5}, \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right), \mathbb{Z}_{2} \times S_{4}, \mathbb{Z}_{2} \ltimes S L_{2}(3), S_{3} \ltimes\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right), P S L_{2}(7)
$$

Remark 4. 1. In general, for a finite group G, its action on Σ_{g} is not unique. Nevertheless, for each of the above eight groups, its action on Σ_{3} is unique up to equivalence. 2. In $\S 3$, we make a list of other finite group actions as subgroup actions of the above eight finite group actions.
3. On Broughton's list, there is no action of $\mathbb{Z}_{2} \ltimes S L_{2}(3)$.
4. The actions of $\mathbb{Z}_{9}, \mathbb{Z}_{14}$ are generated by $f_{3,8}$ and $f_{3,1}$ in Theorem 2 respectively and Dehn twist presentations of them are obtained in this theorem.

Figure 3
3.1. A Dehn twist presentation of the action of $P S L_{2}(7)$. By Hurwitz, it was shown that orders of finite subgroups of $\mathcal{M}\left(\Sigma_{g}\right)$ are at most $84(g-1)$. When $g=3$ there is a subgroup of $\mathcal{M}\left(\Sigma_{3}\right)$ whose order is $84(3-1)=168$. This subgroup is the

[^1]automorphism group of the Klein quartic $\left\{(x: y: z) \in \mathbb{C} P^{2} \mid x^{3} y+y^{3} z+z^{3} y=0\right\}$, and is isomorphic to
\[

P S L_{2}(7)=\left\{\left.\left($$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right) \right\rvert\, a, b, c, d \in \mathbb{Z}_{7}, a d-b c=1\right\} /\left\{ \pm E_{2}\right\}
\]

Figure 3 explains the action of $P S L_{2}(7)$ on Σ_{3}. Let G be the clockwise $2 \pi / 3$ rotation whose center is p_{1} and F the clockwise $2 \pi / 7$ rotation whose center is p_{2}. Then the action of $P S L_{2}(7)$ is generated by F and G, and the relations are $F^{7}=G^{3}=(G F)^{2}=$ $\left(G F G^{-1} F^{-1}\right)^{4}=1$. Figure 4 is obtained from Figure 3 by identifying each pair of edges

Figure 4
with the same number. The triangles in Figure 4 correspond to the thick triangles in Figure 3; for example, the triangle with a symbol " A " is a triangle obtained from six triangles encircling the point p_{1}. In order to explain the way how to obtain Figure 4 in detail, we explain the action of G. In Figure 5, G fixes A and A^{\prime}, and sends other points as $B \rightarrow C^{\prime} \rightarrow D, B^{\prime} \rightarrow C \rightarrow D^{\prime}$. Let L_{A} be the union of two thick triangles which are the union of triangles surrounding A and A^{\prime} and the three arcs connecting these thick triangles. We obtain T_{B}, T_{C} and T_{D} in the same way as above. If we remove T_{A}, \ldots, T_{D} from Σ_{3}, we have six annuli $I, \cdots, I V$ remained. Each of these annuli are divided into eight thick triangles. In the left of Figure 6, we put T_{A}, \ldots, T_{D} on Σ_{3} such that G acts as a $2 \pi / 3$ rotation. The annuls I is as in the middle of Figure 6. We put this triangulated annulus with taking care of the edge correspondence, then we have the right of Figure 6. After we put the other annuli $I I, \cdots, V I$ in the same way, we have Figure 4.

In Figure $4, G$ is a $2 \pi / 3$ rotation about the center of A, and is a periodic map with order 3 whose Dehn twist presentation was obtained by Okuda-Takamura [14]. On

Figure 5

Figure 6
the left of Figure 7, F exchanges edges $1,2, \cdots, 7$ clockwisely. If we draw these edges $1,2, \cdots, 7$ on Figure 4, we obtain the right of Figure 7. By this figure, we can observe that the total valency of F is $\left(7, \frac{1}{7}+\frac{2}{7}+\frac{4}{7}\right)$, and F corresponds to $f_{3,9}$ in Theorem 2. The product of Dehn twists $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 8$ representing $f_{3,9}$ brings the edges on a figure of Σ_{3} on the upper left of Figure 8 according to their numbering. The upper left of Figure 8 is excerpted from Figure 21 of [5]. Let Φ be an orientation preserving homeomorphism from the upper left Σ_{3} to the lower left Σ_{3} in Figure 8 which brings the arcs with the same number. Since the complement of these arcs is an open disk in

Figure 7

Figure 8
each Σ_{3}, Φ is uniquely determined up to isotopy. The circles $r_{i}=\Phi\left(c_{i}\right)$ are as in the lower right of Figure 8, and we see $F=t_{r_{6}} t_{r_{5}} t_{r_{4}} t_{r_{3}} t_{r_{2}} t_{r_{1}} t_{r_{5}} t_{r_{4}} t_{r_{8}}$.

Proposition 5. The automorphism group $P S L_{2}(7)$ of Klein quartic $\{(x: y: z) \in$ $\left.\mathbb{C} P^{2} \mid x^{3} y+y^{3} z+z^{3} y=0\right\}$ is generated by

$$
F=t_{r_{6}} t_{r_{5}} t_{r_{4}} t_{r_{3}} t_{r_{2}} t_{r_{1}} t_{r_{5}} t_{r_{4}} t_{r_{8}}, \quad G=t_{q_{1}} t_{q_{2}} t_{q_{3}} t_{q_{1}^{\prime}} t_{q_{2}^{\prime}} t_{q_{3}^{\prime}}^{\prime} t_{q_{0}}
$$

and its defining relations are $F^{7}=G^{3}=(G F)^{2}=\left(G F G^{-1} F^{-1}\right)^{4}=1$. In the above presentation r_{i} are simple closed curves shown in Figure 8, and q_{i}, q_{i}^{\prime} are simple closed curves shown in Figure 9.

Figure 9
3.2. A Dehn twist presentation of the action of $S_{3} \ltimes\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)$. The finite group action on Σ_{3} with the second largest order is the automorphism group of the Fermat quartic $\left\{(x: y: z) \in \mathbb{C} P^{2} \mid x^{4}+y^{4}+z^{4}=0\right\}$. This group is isomorphic to $S_{3} \ltimes\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)$, where $S_{3}=\left\langle x, y \mid x^{2}=y^{3}=1, x y x^{-1}=y^{-1}\right\rangle$ acts on $\mathbb{Z}_{4} \times \mathbb{Z}_{4}=\langle z, w| z^{4}=w^{4}=$ $1, z w=w z\rangle$ by $x z x^{-1}=w, x w x^{-1}=z, y z y^{-1}=w, y w y^{-1}=(z w)^{-1}$.

Figure 10

Figure 10 is obtained by editing Figure 10 of [7]. A fundamental region of the automorphism group of the Fermat quartic is a union of adjacent two triangles. Each thick triangles is a union of three fundamental regions. Figure 11 is obtained from Figure 10 by identifying each pair of edges with the same number. The triangles in Figure 11 correspond to the thick triangles in Figure 10. We obtained Figure 11 in the same way as in the previous subsection. Let P be a clockwise $2 \pi / 3$ rotation about the center of c_{0} and Q a clockwise $2 \pi / 8$ rotation about the center of Figure 10. Then the

Figure 11
automorphism group of the Fermat quartic is generated by P and Q. On the left of

Figure 12

Figure 12, the rotation Q maps $e_{1} \rightarrow e_{2} \rightarrow \cdots \rightarrow e_{8} \rightarrow e_{1}$. If we draw e_{1}, \ldots, e_{8} on Figure 11, we obtain the right of Figure 12. The total valency of Q is $\left(8, \frac{1}{8}+\frac{1}{4}+\frac{5}{8}\right)$, which corresponds to $f_{3,7}$ of Theorem 2. On upper left of Figure 13 excerpted from Figure 20 of [5], a product of Dehn twists $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 4 \cdot 3 \cdot 8$ representing $f_{3,7}$ brings e_{i} to $e_{i+1}(i=1, \ldots, 6)$ and e_{7} to e_{1}. Let Φ be an orientation preserving homeomorphism from the upper left of Figure 13 to the lower left of Figure 13 which sends e_{i} to e_{i}. The circles $s_{i}=\Phi\left(c_{i}\right)$ are as on the lower right of Figure 13 and we have $Q=t_{s_{6}} t_{s_{5}} t_{s_{4}} t_{s_{3}} t_{s_{2}} t_{s_{5}} t_{s_{4}} t_{s_{3}} t_{s_{8}}$.

Figure 13
Proposition 6. The automorphism group of the Fermat quartic $\{(x: y: z) \in$ $\left.\mathbb{C} P^{2} \mid x^{4}+y^{4}+z^{4}=0\right\}$ is generated by

$$
P=t_{q_{1}} t_{q_{2}} t_{q_{3}} t_{q_{1}^{\prime}} t_{q_{2}^{\prime}} t_{q_{3}^{\prime}} t_{q_{0}}, \quad Q=t_{s_{6}} t_{s_{5}} t_{s_{4}} t_{s_{3}} t_{s_{2}} t_{s_{5}} t_{s_{4}} t_{s_{3}} t_{s_{8}}
$$

and its defining relations are $P^{3}=Q^{8}=(P Q)^{2}=\left(P Q^{4}\right)^{3}=1$. In the above presentation, s_{i} are simple closed curves shown in Figure 13, and q_{i} and q_{i}^{\prime} are those in Figure 14.

Figure 14
3.3. A Dehn twist presentation of the action of $\mathbb{Z}_{2} \ltimes S L_{2}(3)$. This semi-direct product $\mathbb{Z}_{2} \ltimes S L_{2}(3)$ is defined by the action of $\mathbb{Z}_{2}=\left\langle\sigma \mid \sigma^{2}=1\right\rangle$ on $S L_{2}(3)=$ $\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1}^{3}=1, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle$ by $\sigma \sigma_{1} \sigma=\sigma_{2}$. If we put $T=\sigma_{1}, S=\sigma$, then $\mathbb{Z}_{2} \ltimes S L_{2}(3)=\left\langle T, S \mid T^{3}=S^{2}=1,(T S)^{3}=(S T)^{3}\right\rangle$. In this group $T S$ has order 12 and corresponds to $f_{3,6}$ of Theorem 2. Figure 15 obtained by modifying Figure 24 of [5] shows the action on Σ_{3} of the product of Dehn twists $t_{c_{6}} t_{c_{5}} t_{c_{4}} t_{c_{3}} t_{c_{2}} t_{c_{8}}$ representing

Figure 15
$f_{3,6}$. Let e_{i} be an edge with single arrow and index i, E_{i} be an edge with double arrow and index i, and \bar{e}_{i}, \bar{E}_{i} be the edges with opposite orientation of e_{i}, E_{i} respectively. The group $\mathbb{Z}_{2} \ltimes S L_{2}(3)$ acts on a graph in Σ_{3} consists of these edges. We regard the left end F of the edge E_{0} as the fundamental domain of this action and, for an elements g of $\mathbb{Z}_{2} \ltimes S L_{2}(3)$, the end of an edge marked by the symbol g is $F g$. The action of the involution S on these edges is as follows, $E_{11} \rightarrow \overline{e_{1}}, E_{0} \rightarrow \bar{E}_{0}, E_{1} \rightarrow e_{0}$, $E_{2} \rightarrow \bar{e}_{4}, E_{3} \rightarrow \bar{E}_{3}, E_{4} \rightarrow e_{3}, E_{5} \rightarrow \bar{e}_{7}, E_{6} \rightarrow \bar{E}_{6}, E_{7} \rightarrow e_{6}, E_{8} \rightarrow \bar{e}_{10}^{-}, E_{9} \rightarrow \bar{E}_{9}$, $E_{10} \rightarrow e_{9}, e_{2} \rightarrow \overline{e_{8}}, e_{5} \rightarrow e_{11}^{-}$. For the circles $\gamma_{1}, \ldots, \gamma_{6}, \delta$ and ϵ on the left of Figure 16,

Figure 16
by investigating their intersection with edges e_{i} and E_{i} and the action of S on these edges, we see that S sends $\gamma_{1}, \gamma_{2}, \gamma_{3}$ to $\gamma_{6}, \gamma_{5}, \gamma_{4}$ respectively, and fixes δ and ϵ setwisely with reversing their orientations. There is an orientation preserving homeomorphism Φ between Σ_{3} on the upper right of Figure 16 to Σ_{3} on the left of Figure 16 sending the circles $\gamma_{1}, \ldots, \gamma_{6}, \delta$ and ϵ to the circles with the same names. Korkmaz [10] showed that $\sigma=t_{a}^{2} t_{b}^{2} t_{d_{3}} t_{d_{2}} t_{d_{1}} t_{d_{0}}$, where Dehn twists are about the circles on the lower right of Figure 16. These circles d_{1}, d_{2}, d_{3} are obtained from ϵ by the maps $t_{\gamma_{1}} t_{\gamma_{6}}, t_{\gamma_{1}} t_{\gamma_{6}} t_{\gamma_{2}} t_{\gamma_{5}}$, $t_{\gamma_{1}} t_{\gamma_{6}} t_{\gamma_{2}} t_{\gamma_{5}} t_{\gamma_{3}} t_{\gamma_{4}}$ respectively. We denote the images of the circles $a, b, d_{0}=\epsilon, d_{1}, d_{2}, d_{3}$ by the map Φ by the same symbols and show them in Figure 17. The map $t_{a}^{-1} t_{b}^{-1}$ sends the circles d_{1}, d_{2}, d_{3} on Σ_{3} on the lower left of Figure 17 to the circles $d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}$ on the lower right of Figure 17. We remark that $t_{a}^{2} t_{b}^{2} t_{d_{3}} t_{d_{2}} t_{d_{1}} t_{d_{0}}=t_{a} t_{b} t_{d_{3}^{\prime}} t_{d_{2}^{\prime}} t_{d_{1}^{\prime}} t_{a} t_{b} t_{d_{0}}$. In summary, we have:

Proposition 7. The action of $\mathbb{Z}_{2} \ltimes S L_{2}(3)=\left\langle T, S \mid T^{3}=S^{2}=1,(T S)^{3}=(S T)^{3}\right\rangle$ on Σ_{3} is generated by $T S=t_{c_{6}} t_{c_{5}} t_{c_{4}} t_{c_{3}} t_{c_{2}} t_{c_{8}}, S=t_{a} t_{b} t_{d_{3}^{\prime}} t_{d_{2}^{\prime}} t_{d_{1}^{\prime}} t_{a} t_{b} t_{d_{0}}$. In the above presentation, $a, b, c_{i}, d_{0}, d_{i}^{\prime}$ are simple closed curves shown in Figure 17.

Figure 17
3.4. Dehn twist presentations of the actions of $D_{2,12,5}, \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$, and $\mathbb{Z}_{2} \times S_{4}$. These groups are presented as follows,

$$
\begin{gathered}
D_{2,12,5}=\left\langle x, y \mid x^{2}, y^{12}, x y x y^{-5}\right\rangle \\
\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)=\left\langle x, y, z \mid x^{2}, y^{2}, z^{8}, y z y^{-1} z^{-1}, x y x^{-1} y^{-1}, x z x^{-1} z^{-3} y^{-1}\right\rangle \\
\mathbb{Z}_{2} \times S_{4}=\left\langle x, y, z \mid x^{2}, y^{3}, z^{4}, x y x^{-1} y^{-1}, x z x^{-1} z^{-1}, y z y z\right\rangle .
\end{gathered}
$$

These groups are subgroup of the hyperelliptic mapping class group of Σ_{3}. Yusuke Hasegawa [4] obtained Dehn twist presentations of the action of these groups. For self-containedness, we will explain Dehn twist presentations of these actions, which are
obtained independently from the Hasegawa's presentations. The hyperelliptic mapping class group of Σ_{3} is generated by Dehn twists about the circles $c_{1}, c_{2}, \ldots, c_{7}$. In our presentations, we use Dehn twists about these circles. In the following presentation, k means the Dehn twist $t_{c_{k}}$ about the simple closed curve c_{k} and \bar{k} means $t_{c_{k}}^{-1}$.
3.4.1. A Dehn twist presentation of the action of $D_{2,12,5}$. The group $D_{2,12,5}$ preserves a graph on Σ_{3} illustrated in Figure 18. The edge with 1 is the fundamental domain F of this action and the edge with $g \in D_{2,12,5}$ is $F g$. We denote the curve with edge $x y^{i}$ by $a_{i}(i=0,1, \ldots, 5)$ and the curve with opposite orientation by $\overline{a_{i}}$. The element $x \in D_{2,12,5}$ maps $a_{0} \rightarrow \overline{a_{0}}, a_{1} \rightarrow \overline{a_{5}}, a_{2} \rightarrow a_{4}, a_{3} \rightarrow \overline{a_{3}}$, and the element $y \in D_{2,12,5}$ maps $a_{0} \rightarrow a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{4} \rightarrow a_{5} \rightarrow \overline{a_{0}} \rightarrow \overline{a_{1}} \rightarrow \cdots$. By investigating the actions of Dehn twists on these circles, we see:

Figure 18

Proposition 8. The action of $D_{2,12,5}$ on Σ_{3} is generated by $x=(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6) \cdot(1$. $2 \cdot 3 \cdot 4 \cdot 5) \cdot(1 \cdot 2 \cdot 3 \cdot 4) \cdot(1 \cdot 2 \cdot 3) \cdot(1 \cdot 2) \cdot 1 \cdot(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7)$, and $y=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 6$.
3.4.2. A Dehn twist presentation of the action of $\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$. The group $\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times\right.$ \mathbb{Z}_{8}) preserves a graph on Σ_{3} illustrated in Figure 19. The edge with 1 is the fundamental domain F of this action and the edge with $g \in \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ is $F g$. We denote the curve with edge z^{i} by $b_{i}(i=0,1, \ldots, 7)$ and the curve with opposite orientation by $\overline{b_{i}}$. The element $x \in \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ maps $b_{0} \rightarrow \overline{b_{0}}, b_{1} \rightarrow b_{7}, b_{2} \rightarrow b_{6}, b_{3} \rightarrow b_{5}, b_{4} \rightarrow \overline{b_{4}}$, and the element $z \in \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ maps $b_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow b_{3} \rightarrow b_{4} \rightarrow b_{5} \rightarrow b_{6} \rightarrow b_{7} \rightarrow b_{0}$. By investigating the actions of Dehn twists on these circles, we see:

Proposition 9. The action of $\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right)$ on Σ_{3} is generated by $x=(1 \cdot 2 \cdot 3 \cdot 4$. $5 \cdot 6 \cdot 7) \cdot(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6) \cdot(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5) \cdot(1 \cdot 2 \cdot 3 \cdot 4) \cdot(1 \cdot 2 \cdot 3) \cdot(1 \cdot 2) \cdot 1$, and $z=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.
3.4.3. A Dehn twist presentation of the action of $\mathbb{Z}_{2} \times S_{4}$. The action of the group S_{4} preserves a graph on Σ_{3} illustrated in Figure 20. The edge with 1234 is the fundamental

Figure 19
domain F of this action and the edge with $a_{1} a_{2} a_{3} a_{4}$ is $F \sigma$ for $\sigma \in S_{4}$ such that $\sigma(i)=a_{i}$ for each $i \in\{1,2,3,4\}$. We denote by d_{i} the circle having an arrow with the symbol d_{i} and by \bar{d}_{i} the circle with opposite orientation. The element $x \in \mathbb{Z}_{2} \times S_{4}$ acts on Σ_{3} as a hyperelliptic involution. The cyclic permutation $y=(2,3,4) \in \mathbb{Z}_{2} \times S_{4}$ maps $d_{1} \rightarrow d_{5} \rightarrow d_{4} \rightarrow d_{1}, d_{2} \rightarrow d_{3} \rightarrow \bar{d}_{6} \rightarrow d_{2}$, and the cyclic permutation $z=(1,4,3,2) \in$ $\mathbb{Z}_{2} \times S_{4}$ maps $d_{1} \rightarrow d_{2} \rightarrow \bar{d}_{1}, d_{3} \rightarrow d_{4} \rightarrow \bar{d}_{3}, d_{5} \rightarrow d_{6} \rightarrow d_{5}$. By investigating the actions of Dehn twists on these circles, we see:

Figure 20

Proposition 10. The action of $\mathbb{Z}_{2} \times S_{4}$ on Σ_{3} is generated by $x=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$. $7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, \quad y=5 \cdot 6 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 2 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ and $z=(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7)^{2}$.

4. A list of non maximal finite group actions on Σ_{3}

In this section, we list non maximal finite group actions on Σ_{3} as subgroup actions of maximal finite group actions. This list is obtained by using GAP 4. In this list, 3.xx is a name of a finite group action on the list by Broughton [2], especially, 3.at $=P S L_{2}(7)$ $(\S 2.1)$, 3.as $=S_{3} \ltimes\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)(\S 2.2)$, 3.ao $=\mathbb{Z}_{2} \ltimes S L_{2}(3)(\S 2.3)$, 3.ap $=\mathbb{Z}_{2} \times S_{4}$, 3.am.1 $=\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right), 3 . \mathrm{ah}=D_{2,12,5}(\S 2.4), 3 . \mathrm{aa}=\mathbb{Z}_{14}, 3 . \mathrm{t}=\mathbb{Z}_{9}(\S 1)$.

$$
\text { 3.xx: 3.yy } \ni F_{1}=* * *, F_{2}=* * *,[\cdots]
$$

means that $3 . x x$ is a subgroup action of $3 . y y$, the elements F_{1}, F_{2} of $3 . y y$ generate the action of $3 . x x$, and, in $[\cdots], \cdots$ are defining relations among F_{1}, F_{2}.
3.aq: 3.as $\ni F_{1}=P, F_{2}=Q^{-2},\left[F_{1}^{3}, F_{2}^{4}, F_{2}^{-1} F_{1}^{-1} F_{2}^{-1} F_{1}^{-1} F_{2}^{-1} F_{1}^{-1}, F_{2}^{-1} F_{1} F_{2}^{-1} F_{1} F_{2}^{-1} F_{1}\right]$ 3.am.2: 3.as $\ni F_{1}=Q, F_{2}=P Q^{-1} P,\left[F_{2}^{2}, F_{1} F_{2} F_{1}^{-2} F_{2} F_{1}, F_{1}^{8}, F_{2} F_{1} F_{2} F_{1} F_{2} F_{1} F_{2} F_{1}\right]$
3.al: 3.at $\ni F_{1}=F^{-3} G F^{-2}, F_{2}=F G^{2} F,\left[F_{1}^{3}, F_{2} F_{1} F_{2} F_{1}, F_{2}^{4}, F_{2}^{2} F_{1}^{-1} F_{2} F_{1}^{-1} F_{2}^{-2} F_{1}^{-1} F_{2} F_{1}^{-1}\right]$
3.as $\ni F_{1}=Q P, F_{2}=P Q^{2}, F_{3}=P Q^{-1} P$,
$\left[F_{1}^{2}, F_{3}^{2}, F_{2}^{3}, F_{1} F_{2} F_{3} F_{2}^{-1}, F_{3} F_{1} F_{2}^{-1} F_{3} F_{1} F_{2}^{-1}, F_{3} F_{1} F_{3} F_{1} F_{3} F_{1}\right]$
3.ap $\ni F_{1}=y x^{-1}, F_{2}=z,\left[F_{1}^{2}, F_{2}^{3}, F_{2} F_{1} F_{2} F_{1} F_{2} F_{1} F_{2} F_{1}\right]$
3.ak: 3.ap $\ni F_{1}=y, F_{2}=z,\left[F_{1}^{2}, F_{2}^{3}, F_{2} F_{1} F_{2} F_{1} F_{2} F_{1} F_{2} F_{1}\right]$
3.aj: 3.ao $\ni F_{1}=T, F_{2}=S T S^{-1},\left[F_{1}^{3}, F_{2}^{3}, F_{2} F_{1} F_{2} F_{1}^{-1} F_{2}^{-1} F_{1}^{-1}\right]$
3.ai: 3.ap $\ni F_{1}=x, F_{2}=z, F_{3}=y z y^{-1},\left[F_{1}^{2}, F_{2}^{3}, F_{3}^{3}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{3} F_{1} F_{3}^{-1} F_{1}, F_{3} F_{2} F_{3} F_{2}\right]$
3.ag ${ }^{\dagger}$: 3.at $\ni F_{1}=F, F_{2}=G F^{-3} G^{-1} F G^{-1},\left[F_{2}^{3}, F_{1} F_{2} F_{1}^{-2} F_{2}^{-1}, F_{1} F_{2} F_{1} F_{2} F_{1} F_{2}, F_{1}^{7}\right]$
3.ad.1: 3.ap $\ni F_{1}=x, F_{2}=y, F_{3}=z y z,\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}, F_{3} F_{1} F_{3}^{-1} F_{1}, F_{3} F_{2} F_{3} F_{2}, F_{3}^{4}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=y, F_{3}=z^{-2},\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{3}^{-1} F_{1} F_{3}^{-1}, F_{2} F_{1} F_{2} F_{1}, F_{3} F_{2} F_{3}^{-1} F_{2}, F_{3}^{4}\right]$
3.ad.2: 3.ao $\ni F_{1}=S, F_{2}=T S T^{-1}, F_{3}=T^{-1} S T,\left[F_{1}^{2}, F_{2}^{2}, F_{3}^{2}, F_{1} F_{3} F_{2} F_{1} F_{2} F_{3}, F_{2} F_{1} F_{3} F_{1} F_{2} F_{3}\right]$
3.ac.1: 3.as $\ni F_{1}=Q^{-2}, F_{2}=P Q^{-2} P^{-1},\left[F_{2}^{-1} F_{1}^{-1} F_{2} F_{1}, F_{1}^{4}, F_{2}^{4}\right]$
3.ac.2: 3.am. $1 \ni F_{1}=z x^{-1}, F_{2}=z^{-1} x^{-1},\left[F_{2}^{4}, F_{2}^{2} F_{1}^{2}, F_{2}^{-1} F_{1}^{-1} F_{2}^{-1} F_{1} F_{2}^{-1} F_{1}^{-1} F_{2}^{-1} F_{1}\right]$
3.ab.1: 3.am. $1 \ni F_{1}=y, F_{2}=z,\left[F_{1}^{2}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{2}^{8}\right]$
3.ab.2: 3.as $\ni F_{1}=Q^{-1} P, F_{2}=Q^{3} P,\left[F_{2} F_{1}^{-1} F_{2} F_{1}^{-1}, F_{2}^{2} F_{1}^{2}, F_{2}^{8}, F_{1}^{8}\right]$
3.z: 3.at $\ni F_{1}=G^{-1} F^{-1}, F_{2}=F^{-3} G F^{-2},\left[F_{1}^{2}, F_{2}^{3}, F_{1} F_{2}^{-1} F_{1} F_{2}^{-1} F_{1} F_{2}^{-1}\right]$
3.as $\ni F_{1}=P Q^{2}, F_{2}=P Q^{-4} P^{-1} Q^{-2} P^{-1},\left[F_{2}^{3}, F_{1}^{3}, F_{2} F_{1} F_{2} F_{1}, F_{2} F_{1}^{-1} F_{2} F_{1}^{-1} F_{2} F_{1}^{-1}\right]$
3.ap $\ni F_{1}=z, F_{2}=y z y^{-1},\left[F_{1}^{3}, F_{2}^{3}, F_{2} F_{1} F_{2} F_{1}\right]$
3.y: 3.ap $\ni F_{1}=x, F_{2}=z, F_{3}=y z y z^{-1} y^{-1},\left[F_{1}^{2}, F_{3}^{2}, F_{2}^{3}, F_{2} F_{3} F_{2} F_{3}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{3} F_{1} F_{3} F_{1}\right]$
3.ah $\ni F_{1}=y^{-2}, F_{2}=y^{2} x^{-1} y^{-6},\left[F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}, F_{1}^{6}\right]$
3.x: 3.ah $\ni F_{1}=y x^{-1}, F_{2}=y^{-1} x^{-1},\left[F_{1}^{-2} F_{2}^{2}, F_{1}^{-2} F_{2}^{-2}, F_{2}^{-1} F_{1}^{-1} F_{2} F_{1} F_{2} F_{1}\right]$
3.v: 3.ao $\ni F_{1}=T, F_{2}=\operatorname{STSTS}^{-1},\left[F_{1}^{3}, F_{2} F_{1} F_{2}^{-1} F_{1}^{-1}, F_{1} F_{2}^{4}\right]$
3.u: 3.ah $\ni F_{1}=y,\left[F_{1}^{12}\right]$
3.s.1: 3.as $\ni F_{1}=Q^{-1} P Q^{-2}, F_{2}=Q^{-3} P,\left[F_{2} F_{1}^{-1} F_{2}^{-1} F_{1}^{-1}, F_{2}^{4}, F_{2}^{2} F_{1}^{2}, F_{2}^{2} F_{1}^{-2}\right]$
3.so $\ni F_{1}=S T S^{-1} T^{-1}, F_{2}=S T^{-1} S^{-1} T,\left[F_{2} F_{1} F_{2} F_{1}^{-1}, F_{1}^{-1} F_{2} F_{1}^{-1} F_{2}^{-1}\right]$
3.s.2: 3.am. $1 \ni F_{1}=z^{-2} y^{-1}, F_{2}=z^{-2} y^{-1} x z^{2},\left[F_{2}^{2}, F_{1}^{4}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ap $\ni F_{1}=y, F_{2}=z y z x^{-1},\left[F_{1}^{2}, F_{2} F_{1} F_{2} F_{1}, F_{2}^{4}\right]$
3.r.1: 3.ap $\ni F_{1}=x, F_{2}=y, F_{3}=z y z^{-1} y^{-1} z$,
$\left[F_{1}^{2}, F_{2}^{2}, F_{3}^{2}, F_{2} F_{3} F_{2} F_{3}, F_{2} F_{1} F_{2} F_{1}, F_{3} F_{1} F_{3} F_{1}, F_{2} F_{3} F_{1} F_{2} F_{3} F_{1}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=y, F_{3}=y^{-1} z x z x$,
$\left[F_{1}^{2}, F_{2}^{2}, F_{3}^{2}, F_{1} F_{3} F_{1} F_{3}, F_{3} F_{2} F_{3} F_{2}, F_{2} F_{1} F_{2} F_{1}, F_{2} F_{3} F_{1} F_{2} F_{3} F_{1}\right]$

[^2]3.r.2: 3.at $\ni F_{1}=F^{-1} G F^{-1} G F, F_{2}=G F^{-2} G F^{-2},\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2} F_{1} F_{2} F_{1} F_{2}\right]$
3.as $\ni F_{1}=P Q^{-1} P, F_{2}=P Q^{3} P,\left[F_{1}^{2}, F_{2}^{4}, F_{1} F_{2}^{-1} F_{1} F_{2}^{-1}\right]$
3.ao $\ni F_{1}=T S T^{-1}, F_{2}=T^{-1} S T,,\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2} F_{1} F_{2} F_{1} F_{2}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=y z^{2},\left[F_{1}^{2}, F_{2}^{-1} F_{1} F_{2}^{-1} F_{1}, F_{2}^{4}\right]$
3.q.1 $\left(x, x, y^{-1}, y\right)$: 3.ap $\ni F_{1}=x, F_{2}=z^{-1} y^{-1},\left[F_{1}^{2}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{2}^{4}\right]$
3.am. $1 \ni F_{1}=y, F_{2}=z^{-2},\left[F_{1}^{2}, F_{2}^{-1} F_{1} F_{2} F_{1}, F_{2}^{4}\right]$
3.q.1 $\left(x, x y^{2}, y, y\right)$: 3.as $\ni F_{1}=Q^{-2}, F_{2}=P Q^{-1} P,\left[F_{2}^{2}, F_{1}^{4}, F_{2} F_{1} F_{2} F_{1}^{-1}\right]$
3.ao $\ni F_{1}=S, F_{2}=T S T S^{-1} T,\left[F_{1}^{2}, F_{2}^{4}, F_{1} F_{2} F_{1} F_{2}^{-} 1\right]$
3.q.1 $\left(x, y^{2}, x y, y\right)$: 3.ah $\ni F_{1}=y x y, F_{2}=y^{3},\left[F_{1}^{2}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{2}^{4}\right]$
3.am. $1 \ni F_{1}=y, F_{2}=y^{-1} x z,\left[F_{1}^{2}, F_{2} F_{1} F_{2}^{-1} F_{1}, F_{2}^{4}\right]$
3.q.2: 3.ap $\ni F_{1}=z^{-1} y^{-1}, F_{2}=z y z^{-1} x^{-1},\left[F_{2}^{2}, F_{1}^{4}, F_{2} F_{1} F_{2} F_{1}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=z^{-2},\left[F_{1}^{2}, F_{2} F_{1} F_{2} F_{1}, F_{2}^{4}\right]$
3.p $\left(x^{6}, x, x\right): 3 . a m .1 \ni F_{1}=z,\left[F_{1}^{8}\right] \quad$ 3.p $\left(x^{2}, x, x^{5}\right): 3$. as $\ni F_{1}=Q^{-1} P,\left[F_{1}^{8}\right]$
3.o $\left(x, x, x^{5}\right)$: 3.aa $\ni F_{1}=x^{6},\left[F_{1}^{7}\right] \quad$ 3.o $\left(x, x^{2}, x^{4}\right)$: 3.at $\ni F_{1}=F$, $\left[F_{1}^{7}\right]$
3.n: 3.ap $\ni F_{1}=z, F_{2}=y z y z^{-1} y^{-1},\left[F_{2}^{2}, F_{1}^{3}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ah $\ni F_{1}=x y^{-2}, F_{2}=x y^{-6},\left[F_{2}^{2}, F_{1}^{2}, F_{2} F_{1} F_{2} F_{1} F_{2} F_{1}\right]$
3.m: 3.at $\ni F_{1}=G^{-1} F^{-1}, F_{2}=G^{-1} F G^{-1} F^{3} G^{-1} F,\left[F_{1}^{2}, F_{2}^{3}, F_{1} F_{2} F_{1} F_{2}\right]$
3.as $\ni F_{1}=Q P, F_{2}=Q^{-1} P Q^{3} P^{-1},\left[F_{1}^{2}, F_{2}^{3}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ap $\ni F_{1}=z, F_{2}=y z y z^{-1} y^{-1} x^{-1},\left[F_{2}^{2}, F_{1}^{3}, F_{2} F_{1}^{-1} F_{2} F_{1}^{-1}\right]$
3.ah $\ni F_{1}=x, F_{2}=y x^{-1} y^{-1} x,\left[F_{1}^{2}, F_{2}^{3}, F_{1} F_{2}^{-1} F_{1} F_{2}^{-1}\right]$
3.k: 3.ao $\ni F_{1}=S T S T^{-1} S^{-1} T S^{-1},\left[F_{1}^{6}\right]$
3.j: 3.ap $\ni F_{1}=x, F_{2}=z,\left[F_{1}^{2}, F_{2}^{3}, F_{2} F_{1} F_{2}^{-1} F_{1}\right] ; 3 . \mathrm{ah} \ni F_{1}=y^{-2},\left[F_{1}^{6}\right]$
3.i.1: 3.at $\ni F_{1}=F^{-2} G F^{-1} G F^{-3},\left[F_{1}^{4}\right] ; 3$ as $\ni F_{1}=Q^{-3} P,\left[F_{1}^{4}\right]$
3.ao $\ni F_{1}=\operatorname{TSTS}^{-1} T,\left[F_{1}^{4}\right] ; 3 . a m .1 \ni F_{1}=y z^{2},\left[F_{1}^{4}\right] ; 3$ ap $\ni F_{1}=x y z,\left[F_{1}^{4}\right]$
3.i.2: 3.am. $1 \ni F_{1}=x, F_{2}=y,\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ap $\ni F_{1}=y x^{-1}, F_{2}=z y z^{-1} y^{-1} z x^{-1},\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2}\right]$
3.h $(x, x, y, y, x y, x y)$: 3.at $\ni F_{1}=G^{-1} F^{-1}, F_{2}=G F^{-2} G F^{-2},\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}\right]$
3.as $\ni F_{1}=P Q^{-1} P, F_{2}=Q^{-4},\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ao $\ni F_{1}=S, F_{2}=T S T^{-1} S T S^{-1} T^{-1},\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=z x z y^{-1},\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}\right]$
3.ap $\ni F_{1}=z y z^{-1} x^{-1}, F_{2}=z^{-1} y z^{-1} y^{-1},\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2}\right]$
3.h $(x, x, y, y, y, y): 3$.ap $\ni F_{1}=x, F_{2}=z y z^{-1} y^{-1} z y^{-1},\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}\right]$
3.am. $1 \ni F_{1}=x, F_{2}=z x z,\left[F_{1}^{2}, F_{2}^{2}, F_{1} F_{2} F_{1} F_{2}\right]$
3.ah $\ni F_{1}=x, F_{2}=y x y,\left[F_{1}^{2}, F_{2}^{2}, F_{2} F_{1} F_{2} F_{1}\right]$
3.g: 3.am. $1 \ni F_{1}=z^{-1} x^{-1},\left[F_{1}^{4}\right] ; 3$ ah $\ni F_{1}=y^{3} x^{-1},\left[F_{1}^{4}\right]$
3.f (x, x, x, x) : 3.as $\ni F_{1}=P Q^{-2} P^{-1},\left[F_{1}^{4}\right] ; 3$ ao $\ni F_{1}=\operatorname{STSTS}^{-1} T,\left[F_{1}^{4}\right]$
3.f $\left(x, x, x^{-} 1, x^{-1} 1\right): 3$. ap $\ni F_{1}=z^{-1} y^{-1},\left[F_{1}^{4}\right] ; 3 . a m .1 \ni F_{1}=z^{-2},\left[F_{1}^{4}\right]$
3.e: 3.at $\ni F_{1}=G F^{-2} G^{-1} F^{2} G^{-1} F,\left[F_{1}^{3}\right] ; 3$.as $\ni F_{1}=Q^{-1} P Q^{3} P^{-1},\left[F_{1}^{3}\right]$
3.ap $\ni F_{1}=z,\left[F_{1}^{3}\right] ; 3$.ah $\ni F_{1}=y^{4},\left[F_{1}^{3}\right]$
3.d: 3.ao $\ni F_{1}=T,\left[F_{1}^{3}\right] ; 3 . \mathrm{t} \ni F_{1}=x^{3},\left[F_{1}^{3}\right]$
3.c: 3.ap $\ni F_{1}=z y z^{-1} y^{-1} z y^{-1},\left[F_{1}^{2}\right] ; 3 . a m .1 \ni F_{1}=y,\left[F_{1}^{2}\right] ; 3 . a h \ni F_{1}=y x y,\left[F_{1}^{2}\right]$
3.b: 3.at $\ni F_{1}=G^{-1} F^{-1},\left[F_{1}^{2}\right] ; 3$ as $\ni F_{1}=P Q^{-1} P Q^{4},\left[F_{1}^{2}\right] ;$ 3.ao $\ni F_{1}=S,\left[F_{1}^{2}\right]$
3.ap $\ni F_{1}=x y z y z^{-1} y^{-1} z,\left[F_{1}^{2}\right] ; 3 . a m .1 \ni F_{1}=x,\left[F_{1}^{2}\right] ; 3$.ah $\ni F_{1}=x,\left[F_{1}^{2}\right]$
3.a: 3.ap $\ni F_{1}=x,\left[F_{1}^{2}\right] ; 3 . a m .1 \ni F_{1}=z x z x^{-1},\left[F_{1}^{2}\right] ; 3$.ah $\ni F_{1}=x y x y,\left[F_{1}^{2}\right] ; 3$.aa $\ni F_{1}=x^{7},\left[F_{1}^{2}\right]$
an action which is not in the list by Broughton an action of $\langle b, c| b^{2}=c^{4}=1, b c b=$ $\left.c^{-1}\right\rangle($ order $=16)$
3.as $\ni F_{1}=Q^{-} 2, F_{2}=P Q^{-1} P, F_{3}=P Q^{3} P$,
$\left[F_{2}^{2}, F_{3}^{-1} F_{1} F_{3}^{-1} F_{1}, F_{3}^{4}, F_{3}^{-2} F_{1}^{2}, F_{2} F_{1}^{-1} F_{2} F_{1}, F_{3} F_{2} F_{3} F_{2}\right]$

Acknowledgements. The author would like to thank Professors Hisanori Ohashi, Shigeru Takamura for fruitful discussions.

References

[1] T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto-Montesinos' theorem, Tohoku Math. J. (2) 54, (2002), 195-226.
[2] S.A. Broughton, Classifying finite group actions on surface of low genus, Jour. of Pure and Appli. Alg. 69, (1990), 233-270
[3] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69, (1938), 135-206.
[4] Y. Hasegawa, work in progress
[5] S. Hirose, Presentations of periodic maps on oriented closed surfaces of genera up to 4, Osaka J. Math. 47, (2010), 385-421
[6] M. Ishizaka, Presentation of hyperelliptic periodic monodromies and splitting families, Rev. Mat. Complut. 20 (2007), no. 2, 483-495.
[7] H. Karcher and M. Weber, The geometry of Klein's Riemann surface, "The Eightfold Way", 9-49, MSRI Publications Volume 35, 1998
[8] S. Kerckhoff, The Nielsen realization problem, Ann. Math. 117, (1983), 235-265.
[9] F. Klein, Ueber die Transformation siebenter Ordnung der elliptischen Funktionen Math. Annalen 14, (1879), 428-471, English transl. (by Silvio Levy) in "The Eightfold Way" MSRI Publications Volume 35, 1998
[10] M. Korkmaz, Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices 2001, no. 3, (2001), 115-128
[11] W.B.R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540.
[12] G. Nakamura and T. Nakanishi, Presentation of finite subgroups of mapping class group of genus 2 surface by Dehn-Lickorish-Humphries generators, Jour. of Pure and Appli. Alg. 222, (2018), 3585-3594
[13] J. Nielsen, The structure of periodic surface transformation, Math. -fys. Medd. Danske Vid. Selsk. 15, nr. 1 (1937) (Jakov Nielsen collected works, Vol.2, 65-102)
[14] T. Okuda and S. Takamura, Degenerations of propeller surfaces and sequences of their splittings, in preparation

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan

E-mail address: hirose_susumu@ma.noda.tus.ac.jp

[^0]: This research is supported by Grant-in-Aid for Scientific Research (C) (No. 16K05156), Japan Society for the Promotion of Science.

[^1]: * Downloadable from http://www.ms.u-tokyo.ac.jp/~sakasai/MCG/MCG.html

[^2]: ${ }^{\dagger}$ its branching indices is $(3,3,7)$

