
DEHN TWIST PRESENTATIONS OF FINITE GROUP ACTIONS
ON THE ORIENTED SURFACES OF GENUS 3

SUSUMU HIROSE

Abstract. In this note we give presentations of all finite subgroups of the mapping
class group of a closed surface of genus 3 by Dehn twists up to conjugacy.

1. Introduction

Let Σg be a closed oriented surface of genus g, and Homeo+(Σg) a group of ori-

entation preserving homeomorphisms over Σg. In this paper, for two elements f1, f2

∈ Homeo+(Σg), f1f2 means appling f1 and then f2. The group M(Σg) of isotopy

classes of Homeo+(Σg) is called the mapping class group of Σg. Any finite subgroup

of M(Σg) can be considered as the automorphism group of some algebraic curve, and

hence finite subgroups of M(Σg) are investigated in various contexts. On the other

t c

Figure 1

hand, Dehn [3] and Lickorish [11] proved that M(Σg) is generated by Dehn twists .

For a simple closed curve c on Σg, the homeomorphism tc on Σg indicated in Figure

1 is called the Dehn twist about c. Since actions on Dehn twists on geometric objects

on Σg, for example homology groups of Σg, are easy to understand, presentations of

elements in M(Σg) by Dehn twists are useful for the investigation on M(Σg). For pe-

riodic elements in M(Σg), Ishizaka [6] completely obtained Dehn twist presentations

in hyperelliptic case, and the author [5] obtained Dehn twist presentations when g is at

most 4. Nakamura-Nakanishi [12] obtained Dehn twist presentations of finite groups

actions on Σ2. In this note, we investigate on Dehn twist presentations of finite group

actions on Σ3.
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Society for the Promotion of Science.
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2. Dehn twist presentations for the periodic maps over Σ3

At first, we explain the classification of periodic map over Σg by Nielsen [13]. A

homeomorphism f over Σg is called periodic if there is an integer n ≥ 1 which satisfies

fn = idΣg . The least integer n which satisfies the above condition is called the period

of f . Let n be the period of periodic map f over Σg. A point p on Σg is a multiple

point if there is an integer k such that 0 < k < n and fk(p) = p, and Mf ⊂ Σg denotes

the set of multiple points of f . Let Σg/f be the orbit space of f , and πf : Σg → Σg/f

the quotient map, i.e. a map defined by πf (x) = [x], where [x] is the point on Σg/f

represented by the point x ∈ Σg. Then πf is an n-fold branched covering ramified at

πf (Mf ) ⊂ Σg/f . Hence, we call Bf = πf (Mf ) a set of branch point . In the above

situation, πf |Σg\Mf
: Σg \ Mf → (Σg/f) \ Bf is an n-fold covering in an ordinary

meaning.

We define a homomorphism Ωf : π1((Σg/f) \ Bf , x) → Zn describing this n-fold

covering πf |Σg\Mf
as follows. We choose a point x̃ in Σg such that πf (x̃) = x. Let l :

[0, 1] → (Σg/f) \Bf be a loop satisfying l(0) = l(1) = x. We make a lift l̃ : [0, 1] → Σg

of l which begins from l̃(0) = x̃, then we see πf (l̃(1)) = l(1) = x, i.e., l̃(1) is in the orbit

of l̃(0) = x̃ by the periodic map f , hence there is an integer k such that fk(x̃) = l̃(1).

We set Ωf ([l]) = k ∈ Zn. Since Zn is an Abelian group, this homomorphism Ωf induces

a homomorphism ωf : H1((Σg/f) \Bf ) → Zn.

Two periodic maps f , f ′ over Σg are conjugate if there is a homomorphism g from

Σg to itself such that f ′ = g ◦ f ◦ g−1.

For each branch point Qi ∈ Bf of f , we choose mutually disjoint small disk DQi
and

orient the boundary SQi
of DQi

clockwisely.

Theorem 1. [13] Two periodic maps f , f ′ over Σg are conjugate if and only if the

following three conditions are satisfied,

(1) the period of f = the period of f ′,

(2) the number of elements of Bf = the number of elements of Bf ′,

(3) if we change the numbering of Bf ′ = {Q′
1, Q

′
2, · · · , Q′

b} properly, we have ωf (SQi
) =

ωf ′(SQ′
i
) for each i． □

By the above theorem, the notation

(
n,

θ1
n

+ · · ·+ θb
n

)
, where n = the period of

f , θi = ωf (SQi
), completely determines the conjugacy class of f . This notation is

introduced by Ashikaga and Ishizaka [1] and called total valency .

Dehn twist presentations of periodic maps over Σ3 are obtained as follows.

Theorem 2. [5] Any periodic map on Σ3 is a power of some of the following periodic

maps,
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f3,1 =

(
14,

1

14
+

3

7
+

1

2

)
, f3,2 =

(
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1

12
+

5

12
+

1

2

)
, f3,3 =

(
8,

1

8
+

1

8
+

3

4

)
,

f3,4 =

(
4,

1

2
+

1

2

)
, f3,5 =

(
2,

)
, f3,6 =

(
12,

1

12
+

1

4
+

2

3

)
, f3,7 =

(
8,

1

8
+

1

4
+

5

8

)
,

f3,8 =

(
9,

1

9
+

1

3
+

5

9

)
, f3,9 =

(
7,

1

7
+

2

7
+

4

7

)
.

Up to conjugacy, these periodic maps are presented as products of Dehn twists as

follows. In the following presentatins k means the Dehn twist about the simple closed

curve ck in Figure 2.

f3,1 = 6 · 5 · 4 · 3 · 2 · 1, f3,2 = 6 · 6 · 5 · 4 · 3 · 2 · 1, f3,3 = 7 · 6 · 5 · 4 · 3 · 2 · 1,

f3,4 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · (7 · 6 · 5 · 4 · 3 · 2 · 1)3,

f3,5 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · (7 · 6 · 5 · 4 · 3 · 2 · 1)5,

f3,6 = 6 · 5 · 4 · 3 · 2 · 8, f3,7 = 6 · 5 · 4 · 3 · 2 · 5 · 4 · 3 · 8, f3,8 = 6 · 5 · 4 · 3 · 2 · 1 · 8,

f3,9 = 6 · 5 · 4 · 3 · 2 · 1 · 5 · 4 · 8.

3. Maximal finite group actions over Σ3 and their Dehn twist

presentations

An injection ϵ from a finite group G to Homeo+(Σg) is called the action of G over

Σg. In this paper, the group G acts on Σ3 from the right; the action of g ∈ G on x ∈ Σ3

is written as xϵ(g) or xg. For a system of generators {g1, . . . , gk} of G, we call a system

of Dehn twist presentations of the isotopy classes of {ϵ(g1), . . . , ϵ(gk)} a Dehn twist

presentation for the finite group action ϵ : G → Homeo+(Σg). Two finite group actions

ϵ1, ϵ2 : G → Homeo+(Σg) are equivalent if there is an automorphism ω of G and an

orientation preserving homeomorphism h over Σg which satisfy ϵ2(g) = h−1ϵ1(ω(g))h

for any g ∈ G.
For an action of a finite group G over Σg, ϵ : G → Homeo+(Σg) and a subgroup H of

G, we can define an action of H over Σg by the restriction ϵ|H : H → Homeo+(Σg) and

we call this action a subgroup action of ϵ. If we obtain a Dehn twist presentation of a
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action ϵ of G over Σg, then we obtain a Dehn twist presentation of a subgroup action

ϵ|H automatically. Therefore, we will obtain Dehn twist presentations of maximal finite

group actions over Σ3.

We remark here that we checked Dehn twist presentations by using T4M7 ∗ imple-

mented by K. Ahara, T. Sakasai, M. Suzuki.

Based on the classification of finite group actions on Σ3 by Broughton [2], we see:

Proposition 3. Any finite group action on Σ3 is a subgroup action of the actions of

following groups:

Z9,Z14, D2,12,5,Z2 ⋉ (Z2 × Z8),Z2 × S4,Z2 ⋉ SL2(3), S3 ⋉ (Z4 × Z4), PSL2(7).

Remark 4. 1. In general, for a finite group G, its action on Σg is not unique. Neverthe-

less, for each of the above eight groups, its action on Σ3 is unique up to equivalence.

2. In §3, we make a list of other finite group actions as subgroup actions of the above

eight finite group actions.

3. On Broughton’s list, there is no action of Z2 ⋉ SL2(3).

4. The actions of Z9, Z14 are generated by f3,8 and f3,1 in Theorem 2 respectively and

Dehn twist presentations of them are obtained in this theorem.
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3.1. A Dehn twist presentation of the action of PSL2(7). By Hurwitz, it was

shown that orders of finite subgroups of M(Σg) are at most 84(g − 1). When g = 3

there is a subgroup of M(Σ3) whose order is 84(3 − 1) = 168. This subgroup is the

∗ Downloadable from http://www.ms.u-tokyo.ac.jp/̃ sakasai/MCG/MCG.html
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automorphism group of the Klein quartic {(x : y : z) ∈ CP 2 |x3y + y3z + z3y = 0} ,

and is isomorphic to

PSL2(7) =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z7, ad− bc = 1

}
/{±E2}.

Figure 3 explains the action of PSL2(7) on Σ3. Let G be the clockwise 2π/3 rotation

whose center is p1 and F the clockwise 2π/7 rotation whose center is p2. Then the

action of PSL2(7) is generated by F and G, and the relations are F 7 = G3 = (GF )2 =

(GFG−1F−1)4 = 1. Figure 4 is obtained from Figure 3 by identifying each pair of edges

A

D'

A'

B'

BC'

C

D

Figure 4

with the same number. The triangles in Figure 4 correspond to the thick triangles in

Figure 3; for example, the triangle with a symbol “A” is a triangle obtained from six

triangles encircling the point p1. In order to explain the way how to obtain Figure 4

in detail, we explain the action of G. In Figure 5，G fixes A and A′, and sends other

points as B → C ′ → D, B′ → C → D′. Let LA be the union of two thick triangles

which are the union of triangles surrounding A and A′ and the three arcs connecting

these thick triangles. We obtain TB, TC and TD in the same way as above. If we

remove TA, . . ., TD from Σ3, we have six annuli I, · · · , IV remained. Each of these

annuli are divided into eight thick triangles. In the left of Figure 6，we put TA, . . ., TD

on Σ3 such that G acts as a 2π/3 rotation. The annuls I is as in the middle of Figure

6. We put this triangulated annulus with taking care of the edge correspondence, then

we have the right of Figure 6. After we put the other annuli II, · · · , V I in the same

way, we have Figure 4.

In Figure 4 , G is a 2π/3 rotation about the center of A, and is a periodic map with

order 3 whose Dehn twist presentation was obtained by Okuda-Takamura [14]. On
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the left of Figure 7, F exchanges edges 1, 2, · · · , 7 clockwisely. If we draw these edges

1, 2, · · · , 7 on Figure 4, we obtain the right of Figure 7. By this figure, we can observe

that the total valency of F is

(
7,

1

7
+

2

7
+

4

7

)
, and F corresponds to f3,9 in Theorem

2. The product of Dehn twists 6 ·5 ·4 ·3 ·2 ·1 ·5 ·4 ·8 representing f3,9 brings the edges on

a figure of Σ3 on the upper left of Figure 8 according to their numbering. The upper

left of Figure 8 is excerpted from Figure 21 of [5]. Let Φ be an orientation preserving

homeomorphism from the upper left Σ3 to the lower left Σ3 in Figure 8 which brings

the arcs with the same number. Since the complement of these arcs is an open disk in
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each Σ3, Φ is uniquely determined up to isotopy. The circles ri = Φ(ci) are as in the

lower right of Figure 8, and we see F = tr6tr5tr4tr3tr2tr1tr5tr4tr8 .

Proposition 5. The automorphism group PSL2(7) of Klein quartic {(x : y : z) ∈
CP 2 |x3y + y3z + z3y = 0} is generated by

F = tr6tr5tr4tr3tr2tr1tr5tr4tr8 , G = tq1tq2tq3tq′1tq′2tq′3tq0

and its defining relations are F 7 = G3 = (GF )2 = (GFG−1F−1)4 = 1. In the above

presentation ri are simple closed curves shown in Figure 8, and qi, q
′
i are simple closed

curves shown in Figure 9.
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3.2. A Dehn twist presentation of the action of S3⋉ (Z4×Z4). The finite group

action on Σ3 with the second largest order is the automorphism group of the Fermat

quartic {(x : y : z) ∈ CP 2 |x4+y4+z4 = 0}. This group is isomorphic to S3⋉(Z4×Z4),

where S3 = ⟨x, y | x2 = y3 = 1, xyx−1 = y−1⟩ acts on Z4 × Z4 = ⟨z, w | z4 = w4 =

1, zw = wz⟩ by xzx−1 = w, xwx−1 = z, yzy−1 = w, ywy−1 = (zw)−1.
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Figure 10 is obtained by editing Figure 10 of [7]. A fundamental region of the

automorphism group of the Fermat quartic is a union of adjacent two triangles. Each

thick triangles is a union of three fundamental regions. Figure 11 is obtained from

Figure 10 by identifying each pair of edges with the same number. The triangles in

Figure 11 correspond to the thick triangles in Figure 10. We obtained Figure 11 in the

same way as in the previous subsection. Let P be a clockwise 2π/3 rotation about the

center of c0 and Q a clockwise 2π/8 rotation about the center of Figure 10. Then the
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Figure 12, the rotation Q maps e1 → e2 → · · · → e8 → e1. If we draw e1, . . . , e8 on

Figure 11, we obtain the right of Figure 12. The total valency of Q is

(
8,

1

8
+

1

4
+

5

8

)
,

which corresponds to f3,7 of Theorem 2. On upper left of Figure 13 excerpted from

Figure 20 of [5], a product of Dehn twists 6 · 5 · 4 · 3 · 2 · 5 · 4 · 3 · 8 representing

f3,7 brings ei to ei+1 (i = 1, . . . , 6) and e7 to e1. Let Φ be an orientation preserving

homeomorphism from the upper left of Figure 13 to the lower left of Figure 13 which

sends ei to ei. The circles si = Φ(ci) are as on the lower right of Figure 13 and we have

Q = ts6ts5ts4ts3ts2ts5ts4ts3ts8 .
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Proposition 6. The automorphism group of the Fermat quartic {(x : y : z) ∈
CP 2 |x4 + y4 + z4 = 0} is generated by

P = tq1tq2tq3tq′1tq′2tq′3tq0 , Q = ts6ts5ts4ts3ts2ts5ts4ts3ts8

and its defining relations are P 3 = Q8 = (PQ)2 = (PQ4)3 = 1. In the above presenta-

tion, si are simple closed curves shown in Figure 13, and qi and q′i are those in Figure

14.
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3.3. A Dehn twist presentation of the action of Z2 ⋉ SL2(3). This semi-direct

product Z2 ⋉ SL2(3) is defined by the action of Z2 = ⟨σ |σ2 = 1⟩ on SL2(3) =

⟨σ1, σ2|σ3
1 = 1, σ1σ2σ1 = σ2σ1σ2⟩ by σσ1σ = σ2. If we put T = σ1, S = σ, then

Z2 ⋉ SL2(3) = ⟨T, S |T 3 = S2 = 1, (TS)3 = (ST )3⟩. In this group TS has order 12

and corresponds to f3,6 of Theorem 2. Figure 15 obtained by modifying Figure 24 of

[5] shows the action on Σ3 of the product of Dehn twists tc6tc5tc4tc3tc2tc8 representing
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f3,6. Let ei be an edge with single arrow and index i, Ei be an edge with double arrow

and index i, and ēi, Ēi be the edges with opposite orientation of ei, Ei respectively.

The group Z2 ⋉ SL2(3) acts on a graph in Σ3 consists of these edges. We regard

the left end F of the edge E0 as the fundamental domain of this action and, for an

elements g of Z2 ⋉ SL2(3), the end of an edge marked by the symbol g is Fg. The

action of the involution S on these edges is as follows, E11 → ē1, E0 → Ē0, E1 → e0,

E2 → ē4, E3 → Ē3, E4 → e3, E5 → ē7, E6 → Ē6, E7 → e6, E8 → ē10, E9 → Ē9,

E10 → e9, e2 → ē8, e5 → ē11. For the circles γ1, . . . , γ6, δ and ϵ on the left of Figure 16,
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by investigating their intersection with edges ei and Ei and the action of S on these

edges, we see that S sends γ1, γ2, γ3 to γ6, γ5, γ4 respectively, and fixes δ and ϵ setwisely

with reversing their orientations. There is an orientation preserving homeomorphism

Φ between Σ3 on the upper right of Figure 16 to Σ3 on the left of Figure 16 sending

the circles γ1, . . . , γ6, δ and ϵ to the circles with the same names. Korkmaz [10] showed

that σ = t2at
2
btd3td2td1td0 , where Dehn twists are about the circles on the lower right of

Figure 16. These circles d1, d2, d3 are obtained from ϵ by the maps tγ1tγ6 , tγ1tγ6tγ2tγ5 ,

tγ1tγ6tγ2tγ5tγ3tγ4 respectively. We denote the images of the circles a, b, d0 = ϵ, d1, d2, d3

by the map Φ by the same symbols and show them in Figure 17. The map t−1
a t−1

b

sends the circles d1, d2, d3 on Σ3 on the lower left of Figure 17 to the circles d′1, d
′
2, d

′
3

on the lower right of Figure 17. We remark that t2at
2
btd3td2td1td0 = tatbtd′3td′2td′1tatbtd0 .

In summary, we have:

Proposition 7. The action of Z2 ⋉ SL2(3) = ⟨T, S |T 3 = S2 = 1, (TS)3 = (ST )3⟩
on Σ3 is generated by TS = tc6tc5tc4tc3tc2tc8，S = tatbtd′3td′2td′1tatbtd0. In the above

presentation, a, b, ci, d0, d
′
i are simple closed curves shown in Figure 17 .
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3.4. Dehn twist presentations of the actions of D2,12,5, Z2 ⋉ (Z2 × Z8), and

Z2 × S4. These groups are presented as follows,

D2,12,5 = ⟨x, y |x2, y12, xyxy−5⟩

Z2 ⋉ (Z2 × Z8) = ⟨x, y, z |x2, y2, z8, yzy−1z−1, xyx−1y−1, xzx−1z−3y−1⟩

Z2 × S4 = ⟨x, y, z |x2, y3, z4, xyx−1y−1, xzx−1z−1, yzyz⟩.

These groups are subgroup of the hyperelliptic mapping class group of Σ3. Yusuke

Hasegawa [4] obtained Dehn twist presentations of the action of these groups. For

self-containedness, we will explain Dehn twist presentations of these actions, which are
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obtained independently from the Hasegawa’s presentations. The hyperelliptic mapping

class group of Σ3 is generated by Dehn twists about the circles c1, c2, . . . , c7. In our

presentations, we use Dehn twists about these circles. In the following presentation, k

means the Dehn twist tck about the simple closed curve ck and k means t−1
ck
.

3.4.1. A Dehn twist presentation of the action of D2,12,5. The group D2,12,5 preserves

a graph on Σ3 illustrated in Figure 18. The edge with 1 is the fundamental domain

F of this action and the edge with g ∈ D2,12,5 is Fg. We denote the curve with edge

xyi by ai (i = 0, 1, . . . , 5) and the curve with opposite orientation by āi. The element

x ∈ D2,12,5 maps a0 → ā0, a1 → ā5, a2 → a4, a3 → ā3, and the element y ∈ D2,12,5

maps a0 → a1 → a2 → a3 → a4 → a5 → ā0 → ā1 → · · · . By investigating the actions

of Dehn twists on these circles, we see:

x y 2x y 8

x y 7

x y 9

x y 3

x y 6
x y x y 11

x y 5
x y 10

x y 4

y 7

y 9
y 5

y 10

y 4y 6 y 11y

x 1

y 3

y 8

y 2

Figure 18

Proposition 8. The action of D2,12,5 on Σ3 is generated by x = (1 · 2 · 3 · 4 · 5 · 6) · (1 ·
2 ·3 ·4 ·5) · (1 ·2 ·3 ·4) · (1 ·2 ·3) · (1 ·2) ·1 · (1 ·2 ·3 ·4 ·5 ·6 ·7)，and y = 1 ·2 ·3 ·4 ·5 ·6 ·6.

3.4.2. A Dehn twist presentation of the action of Z2⋉(Z2×Z8). The group Z2⋉(Z2×
Z8) preserves a graph on Σ3 illustrated in Figure 19. The edge with 1 is the fundamental

domain F of this action and the edge with g ∈ Z2 ⋉ (Z2 × Z8) is Fg. We denote the

curve with edge zi by bi (i = 0, 1, . . . , 7) and the curve with opposite orientation by b̄i.

The element x ∈ Z2⋉ (Z2×Z8) maps b0 → b̄0, b1 → b7, b2 → b6, b3 → b5, b4 → b̄4, and

the element z ∈ Z2 ⋉ (Z2 × Z8) maps b0 → b1 → b2 → b3 → b4 → b5 → b6 → b7 → b0.

By investigating the actions of Dehn twists on these circles, we see:

Proposition 9. The action of Z2 ⋉ (Z2 × Z8) on Σ3 is generated by x = (1 · 2 · 3 · 4 ·
5 · 6 · 7) · (1 · 2 · 3 · 4 · 5 · 6) · (1 · 2 · 3 · 4 · 5) · (1 · 2 · 3 · 4) · (1 · 2 · 3) · (1 · 2) · 1，and

z = 7 · 6 · 5 · 4 · 3 · 2 · 1.

3.4.3. A Dehn twist presentation of the action of Z2 × S4. The action of the group S4

preserves a graph on Σ3 illustrated in Figure 20. The edge with 1234 is the fundamental
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x z 5

x z6

x y z

x 
x z

z6
z 7 z

y z2

x z
1

z5

2

7

x z z2 2

x z z3 3

x zz 44

x y z y z33
x y z y z44

x y z y z55

x y z
y z6

6

x y z y z77

x y y 

x y z y z

Figure 19

domain F of this action and the edge with a1a2a3a4 is Fσ for σ ∈ S4 such that σ(i) = ai

for each i ∈ {1, 2, 3, 4}. We denote by di the circle having an arrow with the symbol

di and by d̄i the circle with opposite orientation. The element x ∈ Z2 × S4 acts on

Σ3 as a hyperelliptic involution. The cyclic permutation y = (2, 3, 4) ∈ Z2 × S4 maps

d1 → d5 → d4 → d1, d2 → d3 → d̄6 → d2, and the cyclic permutation z = (1, 4, 3, 2) ∈
Z2 × S4 maps d1 → d2 → d̄1, d3 → d4 → d̄3, d5 → d6 → d5. By investigating the

actions of Dehn twists on these circles, we see:

1234

4
2
1
3

4321

42
31

2
1
4
32
3
4
1

13
42

1
4
2
3

3214

2431

4123

2314

3142

2413

1342

3
4
2
1

1
2
4
3

4132

31
24

1432

3
2
4
1

2134

1324

3412

d6

d1 d2

d3

d4
d5

Figure 20

Proposition 10. The action of Z2 × S4 on Σ3 is generated by x = 1 · 2 · 3 · 4 · 5 · 6 · 7 ·
7 ·6 ·5 ·4 ·3 ·2 ·1，y = 5 ·6 ·1 ·2 ·3 ·4 ·5 ·6 ·2 ·3 ·4 ·5 ·6 ·2 ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·7 ·6 ·5 ·4 ·3 ·2 ·1
and z = (1 · 2 · 3 · 4 · 5 · 6 · 7)2.

4. A list of non maximal finite group actions on Σ3

In this section, we list non maximal finite group actions on Σ3 as subgroup actions of

maximal finite group actions. This list is obtained by using GAP 4. In this list, 3.xx is

a name of a finite group action on the list by Broughton [2], especially, 3.at = PSL2(7)

(§2.1), 3.as = S3 ⋉ (Z4 ×Z4) (§2.2), 3.ao = Z2 ⋉ SL2(3)(§2.3), 3.ap = Z2 × S4, 3.am.1

= Z2 ⋉ (Z2 × Z8), 3.ah = D2,12,5 (§2.4), 3.aa = Z14, 3.t = Z9 (§1).

3.xx : 3.yy ∋ F1 = ∗ ∗ ∗, F2 = ∗ ∗ ∗, [· · · ]
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means that 3.xx is a subgroup action of 3.yy, the elements F1, F2 of 3.yy generate the

action of 3.xx, and, in [· · · ], · · · are defining relations among F1, F2.

3.aq : 3.as ∋ F1 = P, F2 = Q−2, [F 3
1 , F

4
2 , F

−1
2 F−1

1 F−1
2 F−1

1 F−1
2 F−1

1 , F−1
2 F1F

−1
2 F1F

−1
2 F1]

3.am.2 : 3.as ∋ F1 = Q,F2 = PQ−1P, [F 2
2 , F1F2F

−2
1 F2F1, F

8
1 , F2F1F2F1F2F1F2F1]

3.al : 3.at ∋ F1 = F−3GF−2, F2 = FG2F, [F 3
1 , F2F1F2F1, F

4
2 , F

2
2F

−1
1 F2F

−1
1 F−2

2 F−1
1 F2F

−1
1 ]

3.as ∋ F1 = QP,F2 = PQ2, F3 = PQ−1P,

[F 2
1 , F

2
3 , F

3
2 , F1F2F3F

−1
2 , F3F1F

−1
2 F3F1F

−1
2 , F3F1F3F1F3F1]

3.ap ∋ F1 = yx−1, F2 = z, [F 2
1 , F

3
2 , F2F1F2F1F2F1F2F1]

3.ak : 3.ap ∋ F1 = y, F2 = z, [F 2
1 , F

3
2 , F2F1F2F1F2F1F2F1]

3.aj : 3.ao ∋ F1 = T, F2 = STS−1, [F 3
1 , F

3
2 , F2F1F2F

−1
1 F−1

2 F−1
1 ]

3.ai : 3.ap ∋ F1 = x, F2 = z, F3 = yzy−1, [F 2
1 , F

3
2 , F

3
3 , F2F1F

−1
2 F1, F3F1F

−1
3 F1, F3F2F3F2]

3.ag †: 3.at ∋ F1 = F, F2 = GF−3G−1FG−1, [F 3
2 , F1F2F

−2
1 F−1

2 , F1F2F1F2F1F2, F
7
1 ]

3.ad.1 : 3.ap ∋ F1 = x, F2 = y, F3 = zyz, [F 2
1 , F

2
2 , F2F1F2F1, F3F1F

−1
3 F1, F3F2F3F2, F

4
3 ]

3.am.1 ∋ F1 = x, F2 = y, F3 = z−2, [F 2
1 , F

2
2 , F1F

−1
3 F1F

−1
3 , F2F1F2F1, F3F2F

−1
3 F2, F

4
3 ]

3.ad.2 : 3.ao ∋ F1 = S, F2 = TST−1, F3 = T−1ST, [F 2
1 , F

2
2 , F

2
3 , F1F3F2F1F2F3, F2F1F3F1F2F3]

3.ac.1 : 3.as ∋ F1 = Q−2, F2 = PQ−2P−1, [F−1
2 F−1

1 F2F1, F
4
1 , F

4
2 ]

3.ac.2 : 3.am.1 ∋ F1 = zx−1, F2 = z−1x−1, [F 4
2 , F

2
2F

2
1 , F

−1
2 F−1

1 F−1
2 F1F

−1
2 F−1

1 F−1
2 F1]

3.ab.1 : 3.am.1 ∋ F1 = y, F2 = z, [F 2
1 , F2F1F

−1
2 F1, F

8
2 ]

3.ab.2 : 3.as ∋ F1 = Q−1P, F2 = Q3P, [F2F
−1
1 F2F

−1
1 , F 2

2F
2
1 , F

8
2 , F

8
1 ]

3.z : 3.at ∋ F1 = G−1F−1, F2 = F−3GF−2, [F 2
1 , F

3
2 , F1F

−1
2 F1F

−1
2 F1F

−1
2 ]

3.as ∋ F1 = PQ2, F2 = PQ−4P−1Q−2P−1, [F 3
2 , F

3
1 , F2F1F2F1, F2F

−1
1 F2F

−1
1 F2F

−1
1 ]

3.ap ∋ F1 = z, F2 = yzy−1, [F 3
1 , F

3
2 , F2F1F2F1]

3.y : 3.ap ∋ F1 = x, F2 = z, F3 = yzyz−1y−1, [F 2
1 , F

2
3 , F

3
2 , F2F3F2F3, F2F1F

−1
2 F1, F3F1F3F1]

3.ah ∋ F1 = y−2, F2 = y2x−1y−6, [F 2
2 , F2F1F2F1, F

6
1 ]

3.x : 3.ah ∋ F1 = yx−1, F2 = y−1x−1, [F−2
1 F 2

2 , F
−2
1 F−2

2 , F−1
2 F−1

1 F2F1F2F1]

3.v : 3.ao ∋ F1 = T, F2 = STSTS−1, [F 3
1 , F2F1F

−1
2 F−1

1 , F1F
4
2 ]

3.u : 3.ah ∋ F1 = y, [F 12
1 ]

3.s.1 : 3.as ∋ F1 = Q−1PQ−2, F2 = Q−3P, [F2F
−1
1 F−1

2 F−1
1 , F 4

2 , F
2
2F

2
1 , F

2
2F

−2
1 ]

3.so ∋ F1 = STS−1T−1, F2 = ST−1S−1T, [F2F1F2F
−1
1 , F−1

1 F2F
−1
1 F−1

2 ]

3.s.2 : 3.am.1 ∋ F1 = z−2y−1, F2 = z−2y−1xz2, [F 2
2 , F

4
1 , F1F2F1F2]

3.ap ∋ F1 = y, F2 = zyzx−1, [F 2
1 , F2F1F2F1, F

4
2 ]

3.r.1 : 3.ap ∋ F1 = x, F2 = y, F3 = zyz−1y−1z,

[F 2
1 , F

2
2 , F

2
3 , F2F3F2F3, F2F1F2F1, F3F1F3F1, F2F3F1F2F3F1]

3.am.1 ∋ F1 = x, F2 = y, F3 = y−1zxzx,

[F 2
1 , F

2
2 , F

2
3 , F1F3F1F3, F3F2F3F2, F2F1F2F1, F2F3F1F2F3F1]

†its branching indices is (3, 3, 7)
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3.r.2 : 3.at ∋ F1 = F−1GF−1GF,F2 = GF−2GF−2, [F 2
1 , F

2
2 , F1F2F1F2F1F2F1F2]

3.as ∋ F1 = PQ−1P, F2 = PQ3P, [F 2
1 , F

4
2 , F1F

−1
2 F1F

−1
2 ]

3.ao ∋ F1 = TST−1, F2 = T−1ST,, [F 2
1 , F

2
2 , F1F2F1F2F1F2F1F2]

3.am.1 ∋ F1 = x, F2 = yz2, [F 2
1 , F

−1
2 F1F

−1
2 F1, F

4
2 ]

3.q.1 (x, x, y−1, y): 3.ap ∋ F1 = x, F2 = z−1y−1, [F 2
1 , F2F1F

−1
2 F1, F

4
2 ]

3.am.1 ∋ F1 = y, F2 = z−2, [F 2
1 , F

−1
2 F1F2F1, F

4
2 ]

3.q.1 (x, xy2, y, y): 3.as ∋ F1 = Q−2, F2 = PQ−1P, [F 2
2 , F

4
1 , F2F1F2F

−1
1 ]

3.ao ∋ F1 = S, F2 = TSTS−1T, [F 2
1 , F

4
2 , F1F2F1F

−
2 1]

3.q.1 (x, y2, xy, y): 3.ah ∋ F1 = yxy, F2 = y3, [F 2
1 , F2F1F

−1
2 F1, F

4
2 ]

3.am.1 ∋ F1 = y, F2 = y−1xz, [F 2
1 , F2F1F

−1
2 F1, F

4
2 ]

3.q.2 : 3.ap ∋ F1 = z−1y−1, F2 = zyz−1x−1, [F 2
2 , F

4
1 , F2F1F2F1]

3.am.1 ∋ F1 = x, F2 = z−2, [F 2
1 , F2F1F2F1, F

4
2 ]

3.p (x6, x, x): 3.am.1 ∋ F1 = z, [F 8
1 ] 3.p (x2, x, x5): 3.as ∋ F1 = Q−1P, [F 8

1 ]

3.o (x, x, x5): 3.aa ∋ F1 = x6, [F 7
1 ] 3.o (x, x2, x4): 3.at ∋ F1 = F, [F 7

1 ]

3.n : 3.ap ∋ F1 = z, F2 = yzyz−1y−1, [F 2
2 , F

3
1 , F1F2F1F2]

3.ah ∋ F1 = xy−2, F2 = xy−6, [F 2
2 , F

2
1 , F2F1F2F1F2F1]

3.m : 3.at ∋ F1 = G−1F−1, F2 = G−1FG−1F 3G−1F, [F 2
1 , F

3
2 , F1F2F1F2]

3.as ∋ F1 = QP,F2 = Q−1PQ3P−1, [F 2
1 , F

3
2 , F1F2F1F2]

3.ap ∋ F1 = z, F2 = yzyz−1y−1x−1, [F 2
2 , F

3
1 , F2F

−1
1 F2F

−1
1 ]

3.ah ∋ F1 = x, F2 = yx−1y−1x, [F 2
1 , F

3
2 , F1F

−1
2 F1F

−1
2 ]

3.k : 3.ao ∋ F1 = STST−1S−1TS−1, [F 6
1 ]

3.j : 3.ap ∋ F1 = x, F2 = z, [F 2
1 , F

3
2 , F2F1F

−1
2 F1] ; 3.ah ∋ F1 = y−2, [F 6

1 ]

3.i.1 : 3.at ∋ F1 = F−2GF−1GF−3, [F 4
1 ] ; 3.as ∋ F1 = Q−3P, [F 4

1 ]

3.ao ∋ F1 = TSTS−1T, [F 4
1 ] ; 3.am.1 ∋ F1 = yz2, [F 4

1 ] ; 3.ap ∋ F1 = xyz, [F 4
1 ]

3.i.2 : 3.am.1 ∋ F1 = x, F2 = y, [F 2
1 , F

2
2 , F1F2F1F2]

3.ap ∋ F1 = yx−1, F2 = zyz−1y−1zx−1, [F 2
1 , F

2
2 , F1F2F1F2]

3.h (x, x, y, y, xy, xy): 3.at ∋ F1 = G−1F−1, F2 = GF−2GF−2, [F 2
1 , F

2
2 , F2F1F2F1]

3.as ∋ F1 = PQ−1P, F2 = Q−4, [F 2
1 , F

2
2 , F1F2F1F2]

3.ao ∋ F1 = S, F2 = TST−1STS−1T−1, [F 2
1 , F

2
2 , F2F1F2F1]

3.am.1 ∋ F1 = x, F2 = zxzy−1, [F 2
1 , F

2
2 , F2F1F2F1]

3.ap ∋ F1 = zyz−1x−1, F2 = z−1yz−1y−1, [F 2
1 , F

2
2 , F1F2F1F2]

3.h (x, x, y, y, y, y): 3.ap ∋ F1 = x, F2 = zyz−1y−1zy−1, [F 2
1 , F

2
2 , F2F1F2F1]

3.am.1 ∋ F1 = x, F2 = zxz, [F 2
1 , F

2
2 , F1F2F1F2]

3.ah ∋ F1 = x, F2 = yxy, [F 2
1 , F

2
2 , F2F1F2F1]

3.g : 3.am.1 ∋ F1 = z−1x−1, [F 4
1 ] ; 3.ah ∋ F1 = y3x−1, [F 4

1 ]

3.f (x, x, x, x): 3.as ∋ F1 = PQ−2P−1, [F 4
1 ] ; 3.ao ∋ F1 = STSTS−1T, [F 4

1 ]

3.f (x, x, x−1, x−1): 3.ap ∋ F1 = z−1y−1, [F 4
1 ] ; 3.am.1 ∋ F1 = z−2, [F 4

1 ]
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3.e : 3.at ∋ F1 = GF−2G−1F 2G−1F, [F 3
1 ] ; 3.as ∋ F1 = Q−1PQ3P−1, [F 3

1 ]

3.ap ∋ F1 = z, [F 3
1 ] ; 3.ah ∋ F1 = y4, [F 3

1 ]

3.d : 3.ao ∋ F1 = T, [F 3
1 ] ; 3.t ∋ F1 = x3, [F 3

1 ]

3.c : 3.ap ∋ F1 = zyz−1y−1zy−1, [F 2
1 ] ; 3.am.1 ∋ F1 = y, [F 2

1 ] ; 3.ah ∋ F1 = yxy, [F 2
1 ]

3.b : 3.at ∋ F1 = G−1F−1, [F 2
1 ] ; 3.as ∋ F1 = PQ−1PQ4, [F 2

1 ] ; 3.ao ∋ F1 = S, [F 2
1 ]

3.ap ∋ F1 = xyzyz−1y−1z, [F 2
1 ] ; 3.am.1 ∋ F1 = x, [F 2

1 ] ; 3.ah ∋ F1 = x, [F 2
1 ]

3.a : 3.ap ∋ F1 = x, [F 2
1 ] ; 3.am.1 ∋ F1 = zxzx−1, [F 2

1 ] ; 3.ah ∋ F1 = xyxy, [F 2
1 ] ; 3.aa

∋ F1 = x7, [F 2
1 ]

an action which is not in the list by Broughton an action of ⟨b, c | b2 = c4 = 1, bcb =

c−1⟩(order = 16)

3.as ∋ F1 = Q−2, F2 = PQ−1P, F3 = PQ3P,

[F 2
2 , F

−1
3 F1F

−1
3 F1, F

4
3 , F

−2
3 F 2

1 , F2F
−1
1 F2F1, F3F2F3F2]
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