Periodic maps on surfaces and examples of Lefschetz fibrations

廣瀬 進 (Susumu Hirose) *

February 12, 2008

*佐賀大学 (Saga University)
Definition of Lefschetz fibration

M : compact oriented C^∞ 4-manifold
A C^∞ map $f : M \to S^2$ is a genus g Lefschetz fibration

$$\iff_{\text{def}}$$

(1) $df : TM \to TS^2$ is surjective except at several points p_1, \ldots, p_k,
(2) in a neighborhood of p_i, $f(z_1, z_2) = z_1^2 + z_2^2$,
(3) there is no -1 sphere in each fiber,
(4) its general fiber $= \Sigma_g$.

$q_i := f(p_i)$.
Assume $q_i \neq q_j$.

Definition of Lefschetz fibration

\(M \): compact oriented \(C^\infty \) 4-manifold

A \(C^\infty \) map \(f : M \to S^2 \) is a genus \(g \) Lefschetz fibration

\(\iff \)

\(\text{def} \)

(1) \(df : TM \to TS^2 \) is surjective except at several points \(p_1, \ldots, p_k \),

(2) in a neighborhood of \(p_i \), \(f(z_1, z_2) = z_1^2 + z_2^2 \),

(3) there is no \(-1\) sphere in each fiber,

(4) its general fiber = \(\Sigma_g \).

\(q_i := f(p_i) \).

Assume \(q_i \neq q_j \).

Find examples of non-holomorphic Lefschetz fibrations.

Examples: Fuller, Endo, Korkmaz-Ozbagci, etc...
\(t_i := \) the right handed Dehn twist about \(\tau_i \)

\(W = t_1 t_2 \cdots t_r = id \) (in the mapping class group of \(\Sigma_g \)) \(\cdots \)

Positive relation

Positive relation \(W = id \Leftrightarrow \text{L.f. } f : M \to S^2 =: Lf(W) \)
A way to find positive relations

Use periodic maps on Σ_g

An orientation preserving diffeomorphism $f : \Sigma_g \to \Sigma_g$

is a periodic map

def \iff There is a positive integer n so that $f^n = id_{\Sigma_g}$.

The minimum of n is the period of f.

f is isotopic to $t_1 t_2 \cdots t_k$

(positive Dehn twist presentation for f) \Rightarrow

$t_1 t_2 \cdots t_k \cdot t_1 t_2 \cdots t_k \cdots t_1 t_2 \cdots t_k$ is isotopic to $f^n = id$. n times

Find positive Dehn twist presentations for periodic maps.
Valency data

\[f : \Sigma_g \rightarrow \Sigma_g \] is a periodic map of period \(n \) \(\Rightarrow \)

\[p_f : \Sigma_g \rightarrow \Sigma_g/f \] is an \(n \)-fold branched covering.

\(B_f := \) the set of branch point of \(p_f \).

Describe the rotation around the preimages of the point in \(B_f \):

Let \(B_f = \{ b_1, b_2, \ldots, b_k \} \). Take a small disk around \(b_i \).

The valency of \(b_i := \theta_i/n \). The valency data (notation by Ashikaga and Ishizaka) of \(f := (n, \theta_1/n + \cdots + \theta_k/n) \), where the notation + is just a symbol do not add. (If you add these rational numbers, you get an integer.)
Nielsen’s description

$f_1, f_2 : \Sigma_g \to \Sigma_g$ are diffeomorphisms
f_1 and f_2 are conjugate $\iff \exists$ a self diffeomorphism g over Σ_g
\[
\begin{array}{c}
\Sigma_g \xrightarrow{f_1} \Sigma_g \\
g \\
\Sigma_g \xrightarrow{f_2} \Sigma_g
\end{array}
\]
such that
\[
\begin{array}{c}
g \\
\Sigma_g \\
g
\end{array}
\]

Theorem [Nielsen]
The conjugacy class of periodic map on Σ_g is determined by the valency data $(n, \theta_1/n + \cdots + \theta_k/n)$.
Example for Σ_2

Introduction
Description of Periodic Maps
Valency data
Nielsen’s description
Example for Σ_2
Genus 3
Genus 4
Conclusion remarks
Example for Σ_2

A periodic map on Σ_2
A periodic map on $\Sigma_2 \cdots (10, \frac{3}{10} + \frac{1}{5} + \frac{1}{2})$
A periodic map on Σ_2 ⋯ ($10, 3/10 + 1/5 + 1/2$)
Example for Σ_2

A periodic map on $\Sigma_2 \cdots (10, 3/10 + 1/5 + 1/2)$
A periodic map on $\Sigma_2 \cdots (10, \frac{3}{10} + \frac{1}{5} + \frac{1}{2})$

A periodic map on Σ_2
Example for Σ_2

A periodic map on Σ_2 \(\cdots (10, \frac{3}{10} + \frac{1}{5} + \frac{1}{2}) \)

A periodic map on Σ_2 \(\cdots (8, \frac{1}{8} + \frac{3}{8} + \frac{1}{2}) \)
Example for Σ_2

A periodic map on Σ_2 · · · (10, $3/10 + 1/5 + 1/2$)

A periodic map on Σ_2 · · · (8, $1/8 + 3/8 + 1/2$)

We can generalize this construction to the higher genus. These maps have the maximal and secondary maximal periods for each genus.
Any periodic map on Σ_3 is (conjugate to) the power of the following maps: (hyperelliptic, non-hyperelliptic)

(14, $1/14 + 3/7 + 1/2$)
(12, $1/12 + 5/12 + 1/2$)
(12, $1/12 + 1/4 + 2/3$)
(9, $1/9 + 1/3 + 5/9$)
(8, $1/8 + 1/8 + 3/4$)
(8, $1/8 + 1/4 + 5/8$)
(7, $1/7 + 2/7 + 4/7$)
(4, $1/2 + 1/2$)
(2,).
Any periodic map on Σ_3 is (conjugate to) the power of the following maps: (hyperelliptic, non-hyperelliptic)

$$(14, \frac{1}{14} + \frac{3}{7} + \frac{1}{2}) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1,$$

$$(12, \frac{1}{12} + \frac{5}{12} + \frac{1}{2}) = 6 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1,$$

$$(12, \frac{1}{12} + \frac{1}{4} + \frac{2}{3}) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 8,$$

$$(9, \frac{1}{9} + \frac{1}{3} + \frac{5}{9}) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 8,$$

$$(8, \frac{1}{8} + \frac{1}{8} + \frac{3}{4}) = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1,$$

$$(8, \frac{1}{8} + \frac{1}{4} + \frac{5}{8}) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 4 \cdot 3 \cdot 8,$$

$$(7, \frac{1}{7} + \frac{2}{7} + \frac{4}{7}) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 8,$$

$$(4, \frac{1}{2} + \frac{1}{2}) = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot (7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)^3,$$

$$(2,) = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot (7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)^5.$$

Dehn twist presentations for these maps are as above.
Genus 3 Lefschetz fibration

W: a word of right handed Dehn twists,

$L_{f_{D^2}}(W)$: a Lefschetz fibration over D^2 determined by W.

$(8, 1/8 + 1/8 + 3/4) = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 =: W_1$

$\Rightarrow W_1^8 = id$ is a positive relation.

$(12, 1/12 + 1/4 + 2/3) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 8 =: W_2$

$\Rightarrow W_2^{12} = id$ is a positive relation.

$(8, 1/8 + 1/8 + 3/4)^4 = (12, 1/12 + 1/4 + 2/3)^6 \Rightarrow$

$\exists F$: a fiber preserving diffeo. $\partial L_{f_{D^2}}(W_1^4) \rightarrow -\partial L_{f_{D^2}}(W_2^6)$.

$L_{f}(W_1^4 \# W_2^6) := L_{f_{D^2}}(W_1^4) \cup_F L_{f_{D^2}}(W_2^6)$.
We will show that $L_f(W_1^4 \# W_2^6)$ is non-holomorphic by the method of Endo and Nagami [Trans. AMS, 357(2004)].

\[
\begin{align*}
T & \quad \text{Theorem} \quad [\text{Endo, Math. Ann. 316 (2000)}] \\
& \quad L_f: \text{a genus } g \text{ Lefschetz fibration,} \\
& \quad (1) \ L_f \text{ is hyperelliptic, (2) all sing. fiber of } L_f \text{ is irreducible} \\
\Rightarrow & \quad \text{the signature of } L_f \\
& \quad \text{the number of singular fibers of } L_f = -\frac{g + 1}{2g + 1}.
\end{align*}
\]

$n := \text{the number of singular fibers of } L_f(W_1^4 \# W_2^6)$

$= \text{the word length of } W_1^4 + \text{the word length of } W_2^6 = 64$

$\sigma := \text{the signature of } L_f(W_1^4 \# W_2^6)$

$= \text{the signature of } L_f(W_1^4) + \text{the signature of } L_f(W_2^6) \text{ (by Novikov additivity)}$

$= (-16) + (-20) \text{ (by calculation using Meyer cocycle)} = -36$

$\Rightarrow \sigma/n = -9/16 \neq -4/7 \Rightarrow L_f(W_1^4 \# W_2^6) \text{ is not hyperelliptic.}$
The slope λ of Lefschetz fibration := $12 - \frac{4}{1 + \frac{\sigma}{n}}$.

Theorem [Konno, O.J.M. 28(1991)]

Lf: a genus 3 Lefschetz fibration,
(1) Lf is non-hyperelliptic, (2) isotopic to holomorphic fibration
$\Rightarrow \lambda \geq 3$.

For our $Lf(W_1^4 \# W_2^6)$, $\lambda = 12 - \frac{4}{1 + \frac{-36}{64}} = \frac{20}{7} \leq 3$.
$\Rightarrow Lf(W_1^4 \# W_2^6)$ is non-holomorphic.
Any periodic map on Σ_4 is (conjugate to) the power of the following maps: (hyperelliptic, non-hyperelliptic)

$(18, 1/18 + 4/9 + 1/2)$, $(16, 1/16 + 7/16 + 1/2)$,
$(15, 1/15 + 1/3 + 3/5)$, $(12, 1/12 + 1/6 + 3/4)$,
$(12, 1/12 + 1/3 + 7/12)$
$(10, 1/10 + 1/10 + 4/5)$
$(10, 2/5 + 1/2 + 1/2 + 3/5)$, $(10, 1/10 + 3/10 + 3/5)$,
$(6, 1/6 + 1/3 + 2/3 + 5/6)$, $(6, 1/3 + 1/3 + 1/3 + 1/2 + 1/2)$,
$(6, 1/2 + 1/2)$, $(5, 1/5 + 2/5 + 3/5 + 4/5)$
Any periodic map on Σ_4 is (conjugate to) the power of the following maps: (hyperelliptic, non-hyperelliptic)

$(18, 1/18 + 4/9 + 1/2)$, $(16, 1/16 + 7/16 + 1/2)$,
$(15, 1/15 + 1/3 + 3/5)$, $(12, 1/12 + 1/6 + 3/4)$,
$(12, 1/12 + 1/3 + 7/12) = 6 \cdot 5 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 11$

$(10, 1/10 + 1/10 + 4/5) = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

$(10, 2/5 + 1/2 + 1/2 + 3/5)$, $(10, 1/10 + 3/10 + 3/5)$,
$(6, 1/6 + 1/3 + 2/3 + 5/6)$, $(6, 1/3 + 1/3 + 1/3 + 1/2 + 1/2)$,
$(6, 1/2 + 1/2)$, $(5, 1/5 + 2/5 + 3/5 + 4/5)$

Dehn twist presentation for two of these maps are as above. For the list of presentations for all maps, please see my preprint available from http://www.ms.saga-u.ac.jp/~hirose/work.html
Genus 4 Lefschetz fibration

\[(12, 1/12 + 1/3 + 7/12) = 6 \cdot 5 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 11 =: W_3,\]
\[(10, 1/10 + 1/10 + 4/5) = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 =: W_4,\]
\[(12, 1/12 + 1/3 + 7/12)^6 = (10, 1/10 + 1/10 + 4/5)^5 \Rightarrow \exists \text{ a fiber preserving diffeo. } F : \partial Lf_D^2(W_3^6) \to -\partial Lf_D^2(W_4^5).\]

\[Lf(W_3^6 \# W_4^5) := Lf_D^2(W_3^6) \cup_F Lf_D^2(W_4^5).\]

\[n(Lf(W_3^6 \# W_4^5)) = 105,\]
\[\sigma(Lf(W_3^6 \# W_4^5)) = Lf(W_3^6) + Lf(W_4^5) \text{ (by Novikov)} \]
\[= (-32) + (-25) \text{ (by Meyer cocycle)} = -57.\]

\[\frac{\sigma}{n} = -\frac{19}{35} \neq -\frac{4+1}{2\cdot 4+1} \Rightarrow Lf(W_3^6 \# W_4^5) \text{ is non-hyperelliptic (by Endo).}\]
Theorem [Z. Chen, Inter. J. Math. 4(1993)]

L_f: a genus 4 Lefschetz fibration,

1. L_f is non-hyperelliptic,
2. isotopic to holomorphic fibration

$\Rightarrow \lambda := 12 - \frac{4}{1 + \frac{\sigma}{n}} \geq \frac{24}{7}.$

For $L_f(W_3^6 \# W_4^5)$, $\lambda = \frac{13}{4} \leq \frac{24}{7}$. $\Rightarrow L_f(W_3^6 \# W_4^5)$ is non-holomorphic.
Methods to find Dehn twists presentations

hyperelliptic: presentations are obtained in [Ishizaka, Rev. Mat. Complut.20 (2007)].

non-hyperelliptic: depend on maps.

1. found by using monodromies of plane curve singularity: genus=3, \((12, 1/12 + 1/4 + 2/3), (9, 1/9 + 1/3 + 5/9)\), genus=4, \((15, 1/15 + 1/3 + 3/5)\).
2. found by using computer: genus=3, \((8, 1/8 + 1/4 + 5/8), (7, 1/7 + 2/7 + 4/7)\), genus=4, \((12, 1/12 + 1/3 + 7/12), (10, 1/10 + 3/10 + 3/5)\).
3. found by reducing to the lower genus: genus=4, \((6, 1/6 + 1/3 + 2/3 + 5/6), (6, 1/3 + 1/3 + 1/3 + 1/2 + 1/2), (6, 1/2 + 1/2), (5, 1/5 + 2/5 + 3/5 + 4/5)\).
4. found by hand: genus=4, \((12, 1/12 + 1/6 + 3/4)\).
Coda 1 – signature of periodic map

\[f : \text{a periodic map on } \Sigma_g \text{ of period } n. \]

The quotient space

\[
\frac{\Sigma_3 \times D^2}{(x, y) \sim (f^{-1}(x), e^{2\pi i/n}y)}
\]

has quotient singularities

\[\downarrow \text{Hirzebruch-Jung resolution} \]

A 4-manifold (possibly with rational (-1)-curves) with a boundary.

\[\downarrow \text{blow-downs} \]

A 4-manifold \(M(f) \) with the same boundary.
Example \(f = (12, 1/12 + 1/4 + 2/3) \) of \(\Sigma_3 \)
Example $f = (12, 1/12 + 1/4 + 2/3)$ of Σ_3
Example \(f = (12, 1/12 + 1/4 + 2/3) \) of \(\Sigma_3 \)
Example $f = (12, 1/12 + 1/4 + 2/3)$ of Σ_3
Example \(f = (12, 1/12 + 1/4 + 2/3) \) of \(\Sigma_3 \)
Example $f = (12, 1/12 + 1/4 + 2/3)$ of Σ_3
Example \(f = (12, 1/12 + 1/4 + 2/3) \) of \(\Sigma_3 \)

Signature of \(f := \) the signature of \(M(f) \). (Example: \(= 0 \).)

Problem Let \(f \) be a periodic map of \(\Sigma_g \) such that \(\Sigma_g/f \) is a 2-sphere with 3 branch points. Is there a right handed Dehn twist presentation \(W \) of \(f \) such that the signature of \(f = \) the signature of \(Lf_{D^2}(W) \)?
Coda 2 – parity of periodic map

$\Sigma_g \hookrightarrow S^4$: standardly embedded.

The orientation preserving diffeomorphism ϕ of Σ_g is extendable if and only if ϕ leaves fixed an even spin-structure on Σ_g.

Theorem [H, A.G.T. 2(2002)]

Any orientation preserving diffeomorphism ϕ of Σ_g leaves fixed some spin-structure on Σ_g.

Theorem [Atiyah, Ann. Sci. Éc. Norm. Sup. 4 ser. 4 (1971)]
Parity of $\phi := \begin{cases}
\text{even} & \text{if } \phi \text{ leaves some even spin-structure fixed and no odd spin-structure fixed} \\
\text{odd} & \text{if } \phi \text{ leaves some odd spin-structure fixed and no even spin structure fixed} \\
\text{neutral} & \text{if } \phi \text{ leaves some odd spin-structure fixed and also some even spin-structure fixed}
\end{cases}$

Problem

For periodic maps on Σ_g, find a formula for parity in terms of valency data.