On Ore's harmonic numbers

Takeshi Goto (Tokyo University of Science, Japan)

Contents

Definition of Ore's harmonic numbers

Known facts

Main result

Application

Demonstration of the computation

Notation

- n: a positive integer
 The divisor function σ_k(n) := Σ_{d|n} d^k σ₁(n) = the sum of divisors of n σ₀(n) = the number of divisors of n
- $\sigma_k(n)$ is multiplicative, i.e. $(n,m) = 1 \implies \sigma_k(nm) = \sigma_k(n)\sigma_k(m)$

Notation

H(n) := harmonic mean of divisors of n.

Example.

$$H(6) = \frac{4}{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6}} = \frac{4 \times 6}{6 + 3 + 2 + 1} = 2$$

The function H is also multiplicative since

$$H(n) = \frac{n \,\sigma_0(n)}{\sigma_1(n)}$$

Definition of (Ore's) Harmonic Numbers

A positive integer n is said to be harmonic if H(n) is integral.

- 1 is called a trivial harmonic number.
- 6 is the smallest nontrivial harmonic number.
- (Remark) The following rational number is also called (n-th) harmonic number.

$$H_n := \sum_{i=1}^n \frac{1}{i}$$

Ore's Theorem

Ore proved that

every perfect number is harmonic.

Proof. Let n be a perfect number. Then

$$H(n) = \frac{n \sigma_0(n)}{\sigma_1(n)} = \frac{\sigma_0(n)}{2}$$

It is easy to show that this is integral for a perfect number n.

Ore's Conjecture

Ore's conjecture:

Every nontrivial harmonic number is even. (??)

There does not exist an odd perfect number!

Table of Harmonic numbers

n	H(n)	n	H(n)	n	H(n)	n	H(n)	n	H(n)
1	1	18600	15	360360	44	2290260	41	15495480	86
6	2	18620	14	539400	44	2457000	60	16166592	51
28	3	27846	17	695520	29	2845800	51	17428320	96
140	5	30240	24	726180	46	4358600	37	18154500	75
270	6	32760	24	753480	39	4713984	48	23088800	70
496	5	55860	21	950976	46	4754880	45	23569920	80
672	8	105664	13	1089270	17	5772200	49	23963940	99
1638	9	167400	19	1421280	42	6051500	50	27027000	110
2970	11	173600	27	1539720	47	8506400	49	29410290	81
6200	10	237510	25	2178540	47	8872200	53	32997888	84
8128	7	242060	29	2178540	54	11981970	77	33550336	13
8190	15	332640	26	2229500	35	14303520	86		

Known Facts Problem Which values does the harmonic mean take? Are there integers n

satisfying

Theorem (Kanold, 1957)

For any positive integer c, there exist only finitely many numbers n satisfying H(n)=c.

H(n) = 4, 12, 16, 18, 20, 22, ...?

In 1997, Cohen listed

all harmonic numbers n satisfying H(n) 13.

H(n)	n	H(n)	n
1	1	8	672
2	6	9	1638
3	28	10	6200
5	140	11	2970
	496	13	105664
6	270		33550336
7	8128		

There does not exist a harmonic number n with H(n)=4 or 12.

Main Result

An algorithm to find all harmonic numbers n satisfying H(n)=c for a given integer c.

Use of a personal computer

The list of all harmonic numbers n satisfying H(n) 1200 (there are 1376 such numbers).

Particular result

If n is a nontrivial odd harmonic number, then H(n) > 1200.

Nonexistence of Odd One

There are no odd perfect numbers less than 10^300. (Brent, Cohen & te Riele, 1991)

There are no odd nontrivial harmonic numbers less than 10^12. (Cohen & Sorli, 1998)

There are exactly 435 harmonic numbers less than 10^12. (Sorli, Ph.D thesis)

Application of the Main Result

(my method)

- List all harmonic numbers n satisfying H(n) < 1000.
- List all harmonic numbers n satisfying H(n)⁴ > n.
- The union of these lists contains all harmonic numbers less than 10^12, because n<10^12 H(n)<1000 or H(n)^4>n.

By 1000 1200 and 4 4.25, we obtain the fact:

there are exactly 633 harmonic numbers less than 10^13.

New Record of the nonexistence

There are no nontrivial odd harmonic numbers less than 10^{13} .

There are no nontrivial odd harmonic numbers less than 10^15. (Sorli, Ph.D thesis)

Another Application

(n):= the total number of primes dividing n $(n = p_1^{e_1} \cdots p_r^{e_r} \rightarrow \Omega(n) = e_1 + \cdots + e_r)$

If n is an odd perfect number, then (n) 37. (Iannucci and Sorli, 2003)

If n is a nontrivial odd harmonic number, then (n) 11.

Proof. $\Omega(n) \le 10 \Rightarrow \sigma_0(n) \le 2^{10} = 1024$ $\Rightarrow H(n) < 1024.$

About Distinct Prime Factors

(n):= the number of distinct primes dividing n

If n is an odd perfect number, then

(n) 8. (Chein, 1979, Hagis, 1980)

If n is a nontrivial odd harmonic number, then (n) 3. (Pomerance, 1973)

Open Problem

Problem. If n=p^a q^b r^c is harmonic, is it even?

- Maybe, this problem can be solved by using the theory of cyclotomic polynomials.
- In the case of perfect numbers, it is known that there exist only finitely many odd perfect numbers n with a fixed (n) (in fact, n<2^(4^ (n))), but I know no analogous fact in the case of harmonic numbers (or seeds).

Harmonic Seeds

It was conjectured that the harmonic seed of a harmonic number is unique, but we found the following counterexample.

Basic Algorithm

Let $p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$ be the factorization of n. We call (e_1, e_2, \cdots, e_k) the pairs of exponents of n.

Step 1. List possible pairs of exponents.

For example, if H(n)=5, possible triple pairs are (1,1,1) and (2,1,1). proof. If n has the pair (3,1,1), then $H(n) \ge H(2^3)H(3)H(5) = 16/3 > 5,$ a contradiction. Similarly, (2,2,1) is an impossible pair.

Basic Algorithm

Step 2. List possible prime factors.

For example, suppose that

- H(n)=5,
- the pair of exponents of n is (2,1,1),
- p is the smallest prime factor of n.

Then
$$\sigma_{-1}(n) = \frac{\sigma_0(n)}{H(n)} = \frac{12}{5}.$$

On the other hand, $\sigma_{-1}(n) < \left(\frac{p}{p-1}\right)^3$.

Hence $p < (1 - \sqrt[3]{5/12})^{-1} = 3.95.$

Improved Algorithm

Proposition Let c be the numerator of H(n).

 $(c, \sigma_0(n)) = d \Rightarrow (c/d) \mid n.$

In Step 2, we can cut many possibilities.

We used UBASIC program which is useful to factor integers.