線形代数Ⅰ演習 第19回

1-1 組担当 (446 教室) 高緑 1-2 組担当 (443 教室) 牛島

- **19.0** K = C または K = R とし , V, V^{0} を K 上の線形空間とする . 以下の問に答えなさい .
- 1) V の部分集合 W が V の線形部分空間であるとはどういうことか説明しなさい.
- 2) V の空でない部分集合 S によって張られる部分空間とは何か説明しなさい.
 - 3) 線形写像 $T:V\to V^{\mathfrak{l}}$ の像,及び核とは何か説明しなさい.
- 4) W_1 , $W_2 \subset V$ が部分空間であるとき , W_1 , W_2 の和空間とは何か説明しなさい .

19.1

- 1) 19.0 3) の線形写像の核 Ker(T) ⊂ V は V の線形部分空間であることを示しなさい.
- 2) 19.0 4) の和空間 $W_1 + W_2$ が V の線形部分空間であることを示しなさい.
- 19.2 $V = M_{nn}(C)$ の次の部分集合は部分線形空間かどうか調べなさい.
 - 1) $\{X \in V \mid Tr(X) = 0\}$
 - 2) エルミート行列の全体,
 - 3) ユニタリ行列の全体,
 - 4) 上三角行列の全体,
 - 5) $\{X \in V \mid det(X) = 0\}.$
- 19.3 K = Cとする.

$$W_1 = \overset{\textcircled{@}}{x} = ^t (x_1, x_2, x_3, x_4) \in \mathsf{K}^4 \mid x_1 + 2x_2 + x_3 + 3x_4 = 0, \ x_1 + 3x_2 + 2x_3 = 0$$
, where $W_2 = \overset{\textcircled{@}}{x} = ^t (x_1, x_2, x_3, x_4) \in \mathsf{K}^4 \mid 2x_1 + x_3 + 2x_4 = 0, \ -2x_1 - x_2 - 2x_3 + x_4 = 0$ とする.

- 1) $W_1, W_2 \subset K^4$ は K^4 の部分空間であることを示しなさい.
- 2) $W_1 + W_2$ の次元及び基底を求めなさい.
- 3) $W_1 \cap W_2$ の次元及び基底を求めなさい.